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Abstract
Key message A large genetic variation, moderately high heritability, and promising prediction ability for genomic 
selection show that wheat breeding can substantially reduce the acrylamide forming potential in bread wheat by a 
reduction in its precursor asparagine.
Abstract Acrylamide is a potentially carcinogenic substance that is formed in baked products of wheat via the Maillard reac-
tion from carbonyl sources and asparagine. In bread, the acrylamide content increases almost linearly with the asparagine 
content of the wheat grains. Our objective was, therefore, to investigate the potential of wheat breeding to contribute to a 
reduction in acrylamide by decreasing the asparagine content in wheat grains. To this end, we evaluated 149 wheat varie-
ties from Central Europe at three locations for asparagine content, as well as for sulfur content, and five important quality 
traits regularly assessed in bread wheat breeding. The mean asparagine content ranged from 143.25 to 392.75 mg/kg for the 
different wheat varieties, thus underlining the possibility to reduce the acrylamide content of baked wheat products consid-
erably by selecting appropriate varieties. Furthermore, a moderately high heritability of 0.65 and no negative correlations 
with quality traits like protein content, sedimentation volume and falling number show that breeding of quality wheat with 
low asparagine content is feasible. Genome-wide association mapping identified few QTL for asparagine content, the larg-
est explaining 18% of the genotypic variance. Combining these QTL with a genome-wide prediction approach yielded a 
mean cross-validated prediction ability of 0.62. As we observed a high genotype-by-environment interaction for asparagine 
content, we recommend the costly and slow laboratory analysis only for late breeding generations, while selection in early 
generations could be based on marker-assisted or genomic selection.

Introduction

Health aspects associated with the consumption of bread 
wheat (Triticum aestivum L.) are of major relevance, as 
wheat is one of the most important staple crops worldwide 

(FAOSTAT 2013). In general, bread wheat plays an impor-
tant role for a healthy diet, as supported by medical studies 
and recognized by several international organizations like 
WHO, FAO, and EFSA (cf. Huang et al. 2015). However, 
acrylamide is formed in potentially harmful concentrations 
when cereals such as wheat are treated for a long time with 
heat during the processing to food products (Claus et al. 
2008a). Acrylamide can be found in most cereal products 
such as bread and breakfast cereals, but in particularly high 
concentrations in crispbread, cookies, and gingerbread 
(Becalski et al. 2003; Svensson et al. 2003; Sadd and Ham-
let 2005). Consequently, a range of methods was developed 
to reduce the formation of acrylamide during the produc-
tion process. First of all, the reduction in heat, but also a 
prolonged fermentation time or the addition of specific 
ingredients, for example cysteine or asparaginase, has been 
proposed (Claus et al. 2008a).
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Another promising approach is to decrease the precur-
sors in the raw material and thereby reduce the potential for 
the formation of acrylamide. Acrylamide forms mainly from 
carbonyl sources and free asparagine as part of the Maillard 
reaction (Mottram et al. 2002; Stadler et al. 2002; Zyzak et al. 
2003). As during the production process of cereal products 
the carbonyl sources are available in excess, asparagine is the 
limiting precursor for the formation of acrylamide in cereal 
products (Surdyk et al. 2004). For this reason, studies aiming 
to reduce the precursors in the raw material of cereals mainly 
focused on the asparagine content. For wheat, it was shown 
by experimental field trials that the asparagine content in the 
kernels drastically increased under sulfur-deficient conditions 
(Shewry et al. 1983; Muttucumaru et al. 2006). Conversely, 
however, there was no reduction in the asparagine content in 
the wheat kernels by an additional application of sulfur ferti-
lizer in non-sulfur-deprived environments (Claus et al. 2006). 
Studies performed with few wheat varieties grown at several 
locations reported an effect of the variety on asparagine con-
tent, but often also a high effect of the environment (Claus 
et al. 2006; Corol et al. 2016; Curtis et al. 2018). These studies 
indicated that variety selection and plant breeding might con-
tribute to lower asparagine concentrations in the raw material, 
but the number of varieties tested was low and information 
about the heritability and the genetic architecture of aspara-
gine content in wheat grown under field conditions was lack-
ing. Only one study based on 92 Australian wheat genotypes 
systematically assessed the heritability and the genetic archi-
tecture of asparagine content in wheat and reported a herit-
ability of 0.32 (Emebiri 2014). In addition, this study detected 
putative QTL on chromosome 5A, which explained between 
14 and 24% of the observed variation. However, this study 
was performed under greenhouse conditions and it is unclear 
whether the results are transferable to wheat grown under field 
conditions.

We therefore evaluated 149 bread wheat varieties grown 
at three locations for asparagine content and investigated the 
phenotypic variation as well as the heritability of this trait. 
We further analyzed the association between asparagine and 
sulfur content, as well as the correlation of asparagine con-
tent with other important quality traits to assess possible 
negative effects of breeding for low asparagine content in 
bread wheat. Moreover, we explored the genetic architecture 
of asparagine content in order to evaluate the potential of 
genomic-assisted breeding.

Materials and methods

Plant material and field trials

The plant material consisted of 149 different European 
wheat varieties, mainly originating from Germany, the UK, 

and France. Plants were grown in a winter cropping system, 
with sowing in October and harvest in July of the following 
year. The field experiments were performed at three loca-
tions in the season 2015/2016. The genotypes were grown 
in observation plots with two rows of 1 m length, arranged 
as a partially replicated design with a replication factor of 
1.125 (Williams et al. 2011). The locations were Hohenheim 
(HOH, 48°43′07.3″N 9°11′08.7″E, altitude 403 m, Ger-
many), Oberer Lindenhof (OLI, 48°28′19.0″N 9°18′29.3″E, 
altitude 700 m, Germany), and Eckartsweier (48°32′52.4″N 
7°52′32.5″E, altitude 140 m, Germany).

Laboratory analysis

For the analysis of asparagine and sulfur content, finely 
ground whole-grain flour samples were produced using a 
laboratory mill equipped with a 1-mm sieve (Cyclotec 1093, 
FOSS, Hilleroed, Denmark). The asparagine content was 
determined according to European Commission Regulation 
(EC No 152/2009, Annex III, Method F) with moderate 
modifications. When extracting free natural asparagine from 
plant matrices using mixtures of hydrochloric acid, there 
is a risk that under these conditions, a difficult to estimate 
amount is converted into aspartic acid. The conversion into 
aspartic acid with elimination of ammonia leads to a non-
quantified proportion of asparagine during the measurement 
procedure. Therefore, as an extracting agent for asparagine 
the so-called sample dilution buffer, pH 2.20, was used, 
which is composed of water, methanol, phosphoric acid, 
formic acid, glacial acetic acid, and caprylic/octanoic acid. 
The determination of asparagine in the wheat samples was 
performed as follows: 2 g of the prepared sample material 
was weighed into a PE screw-cap bottle, 50 mL of sample 
dilution buffer was added, and the bottle then tightly closed. 
The mixture was shaken vigorously for 105 min on a labora-
tory shaker. Thereafter, the content of the bottle was quanti-
tatively transferred in a 100-mL volumetric flask, which was 
filled up to mark with sample dilution buffer and treated for 
15 min in an ultrasonic bath. Following a centrifugation step 
(10 min with 3100 rpm), the supernatant was decanted into 
a PE tube and membrane-filtered by syringe filter (cellulose 
acetate, 0.2 µM). This filtrate was used for chromatography. 
Asparagine was separated and determined by ion exchange 
chromatography and ninhydrin post-column derivatization 
using an amino acid analyzer (Biochrom 30; Biochrom Ltd., 
Cambridge, UK). For the analysis of asparagine with Bio-
chrom 30, the buffer separation program had to be specially 
adapted. The recovery for the whole procedure was > 98%, 
and the lower limit of quantification was about 50 mg/kg 
asparagine.

Sulfur content was determined by quantitative elemental 
analysis resp. CHNS analysis using a vario EL cube (Ele-
mentar Analysensysteme GmbH, Langenselbold, Germany). 
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Thirty milligrams of the prepared sample material was 
inserted into the combustion tube of a furnace (1150 °C) 
and burned in an excess of oxygen. The elements bound in 
the sample burn to form gaseous reaction products, e.g.,  SO2 
and  SO3 for sulfur. In various traps, the individual measur-
ing components in the reaction gas mixture are collected 
and in further steps (with adsorption columns/tubes, reduc-
tion tube), separated from each other. The operational pro-
cedure to measure the  SO3 component includes a reduction 
of  SO3 to  SO2 in the reduction tube followed by heating the 
adsorption column to  SO2 desorption temperature. The  SO2 
is then desorbed, and it enters the infrared detector with 
the carrier gas (Helium). The resulting measuring signal is 
finally evaluated via PC. The recovery for the whole proce-
dure was > 90% (corrected by an every working day newly 
determined factor) and the lower limit of quantification was 
about 700 mg/kg sulfur.

Total protein content (PC) was determined with near-
infrared spectroscopy (NIRS) on the grains (ICC standard 
method 159, ICC, Vienna, Austria). In a further attempt, we 
additionally utilized the obtained NIR spectra in order to 
establish a NIRS calibration for asparagine and sulfur con-
tent. We used the ratio of performance to deviation (RPD) 
to evaluate the goodness of fit of the NIRS models (Williams 
1987). For a good prediction of trait values by NIRS models, 
a high RPD is required, with a value of at least 3 for sample 
screening (Batten 1998). Protein quality was measured by 
the sedimentation value in mL according to Zeleny (Z-SDS, 
ICC standard method 116/1, ICC, Vienna, Austria). The fall-
ing number as estimator for the alpha-amylase activity was 
determined with a ‘Perten Falling Number 1800’ device 
(Perten Instruments, Hägersten, Sweden) based on whole-
grain flour (ICC standard method 107/1, Vienna, Austria). 
Thousand kernel weight in g (TKW) was measured using a 
Marvin seed analyzer (GTA Sensorik, Neubrandenburg, 
Germany). The hectoliter weight was estimated by the 
weight of grains fitting in a cylindrical can with a volume of 
26 mL as, HLW =

grain weight (kg)

volume (l)
× 100 l.

Molecular data analysis

Dominant silico-DArTs and SNP marker information was 
obtained for the whole plant material by genotyping-by-
sequencing at Diversity Arrays Technology (Yarralumla, 
Australia) using the Wheat GBS 1.0 assay. The dominant 
silico-DArTs and codominant single-nucleotide polymor-
phism (SNP) markers are in the following denoted by their 
clone ID and the marker-type prefix ‘D’ or ‘S,’ respectively. 
Markers showing more than 25% missing values or a minor 
allele frequency lower than 5% were removed from the ini-
tial marker set. Remaining missing values were imputed by 
the software package LinkImpute that utilizes LD-kNNi, a 
k-nearest neighbor genotype imputation (Money et al. 2015). 

The imputation reached an estimated accuracy of 0.95, 
which is the proportion of masked known genotypes that 
were correctly imputed. After the imputation, markers with 
a minor allele frequency lower than 5% were again removed, 
resulting in 41,604 markers of which 22,122 markers had a 
known map position (Li et al. 2015). In a first run, markers 
with known and unknown map position were included in 
the association mapping. For unmapped markers showing 
significant marker–trait association, we assigned a map posi-
tion, when they were in high linkage disequilibrium with 
many mapped markers at a similar chromosomal position. 
Thus, the estimated map position of a marker with unknown 
position refers to the position of the marker that was in high-
est linkage disequilibrium and had a known map position. In 
the final association mapping, we then used 22,158 markers 
consisting of markers with known map position (22,122) or 
a map position assigned based on linkage disequilibrium 
with mapped markers (36). Of the 22,158 markers, 8339 had 
unique positions on the genetic map that has a total length 
of 3302.5 cM (Li et al. 2015).

Phenotypic data analysis

The asparagine content data showed a left-side skewed dis-
tribution. We applied a logarithmic transformation to the 
data that led to normally distributed residuals and a consid-
erably increased homogeneity of the residuals. The trans-
formed asparagine data were used in the phenotypic analy-
ses, the association mapping, and the genomic prediction. 
In case of computations of correlations among traits and 
estimations of marker effects, we used the back-transformed 
data. The phenotypic data were analyzed according to the 
following statistical model:

where yijk was the phenotypic observation of the ith geno-
type tested at the jth environment in the kth incomplete 
block, � was the general mean, gi the genotypic effect of the 
ith genotype, envj the effect of the jth environment, gi ∶ envj 
was the genotype-by-environment interaction, bjk was the 
effect of the kth block at the jth environment, and eijk was the 
residual error. Estimates for variance components were com-
puted by applying the restricted maximum likelihood 
(REML) method assuming a fully random model in a clas-
sical one-stage analysis (Cochran and Cox 1957). A likeli-
hood ratio test with model comparisons was performed to 
test for significance of variance components (Stram and Lee 
1994). We computed best linear unbiased estimates (BLUEs) 
across all environments assuming fixed genetic effects. The 
heritability ( h2 ) was calculated according to the formula pro-
posed by Piepho and Möhring (2007) as h2 = 1 −

�

2�2
G

 , where 

ϑ is the mean variance of a difference of two best linear 

yijk = � + gi + envj + gi ∶ envj + bjk + eijk,
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unbiased predictors and �2
G

 the genetic variance. All analyses 
were based on the statistical software R (R Development 
Core Team 2018) and the software ASReml 3.0 (Gilmour 
et al. 2009).

Association mapping and genomic prediction

We performed genome-wide association mapping applying 
a mixed linear model approach, including a kinship matrix 
to correct for population structure (Yu et al. 2006). We uti-
lized the function ‘polygenic’ of the R package GenABEL 
to obtain P values for marker–trait associations. An explora-
tive significance threshold of P < 0.001 was used to identify 
significant marker–trait associations. To correct for collin-
earity among markers, i.e., several significant markers iden-
tifying the same QTL, we fitted all significant markers 
simultaneously in a linear model in the order of the strength 
of the marker–trait association, beginning with the marker 
with the lowest P value (Würschum et al. 2015). For the 
applied additive genetic model, marker information was 
coded as 0, 1, 2, with 0 and 2 being the two homozygous 
allelic classes, and the obtained R2

adj
 was used to calculate 

the total proportion of explained genetic variance as 
pG =

R2
adj

h2
× 100% (Würschum et al. 2016). To estimate the 

pG of individual markers, the sums of squares from the 
ANOVA of the linear model including the significant mark-

ers were used in the ratio pG =

SSm

SStotal

h2
× 100% , where SSm are 

the sums of squares of the individual marker and SStotal cor-
responds to the total sums of squares of all markers together. 
Only the markers explaining more than 0.5% of the geno-
typic variance in this approach were finally reported as puta-
tive QTL.

A genomic prediction approach with the R package ‘RR-
BLUP’ (Endelman 2011; Endelman and Jannink 2012) was 
utilized to capture the effects of additional additive genetic 

effects that did not pass the significance threshold of the 
association mapping. This genomic prediction approach was 
based on a ridge regression BLUP (RR-BLUP) and a fivefold 
cross-validation (Würschum et al. 2013, 2014). Additionally, 
a weighted ridge regression best linear unbiased prediction 
(wRR-BLUP) approach was applied, including the putative 
QTL which individually explained more than 10% of the 
genotypic variance. In contrast to the general marker set, 
the identified markers explaining more than 10% were mod-
eled as fixed effects (Boeven et al. 2016; Zhao et al. 2014; 
Spindel et al. 2016). In addition, we used the R package 
‘BGLR’ in order to compare the prediction ability of ridge 
regression BLUP with further genomic prediction models 
including Bayesian and reproducing kernel Hilbert space 
(RKHS) approaches.

Results

In a panel of 149 bread wheat varieties grown at three loca-
tions, we assessed the classical wheat quality parameters 
protein content, sedimentation volume (Z-SDS), falling 
number (FN), thousand kernel weight (TKW), and hecto-
liter weight (HLW), and in addition, the asparagine and sul-
fur content. For all traits, we observed significant genotypic 
variances and except for sulfur content also a significant 
genotype-by-environment interaction. The heritability esti-
mates ranged between 0.65 for protein content and 0.90 for 
TKW (Table 1). Asparagine content showed no strong cor-
relation with any of the other investigated traits, the strong-
est being the negative correlation with Z-SDS (r = − 0.29, 
P < 0.001) (Fig. 1). There was no significant correlation 
between asparagine and sulfur content. Sulfur content, by 
contrast, showed a significant and positive correlation with 
protein content (r = 0.67, P < 0.001).

A wide range of phenotypic values was found for 
asparagine and sulfur content, ranging from 143.25 to 

Table 1  Summary statistics for asparagine content, sulfur content, protein content, sedimentation volume according to Zeleny (Z-SDS), falling 
number, thousand kernel weight (TKW), and hectoliter weight (HLW)

�2

G
 genotypic variance, �2

G×E
 genotype-by-environment interaction variance, �2

e
 error variance, h2 heritability

*, **, ***Significant at the 0.05, 0.01, and 0.001 probability level, respectively
a Min, mean, max, values are given in back-transformed unit, variance components in log10-transformed form

Parameter Asparaginea (mg/kg) Sulfur (mg/kg) Protein content (%) Z-SDS (mL) Falling number (s) TKW (g) HLW (kg)

Min 143.25 1131.00 10.82 10.18 207.42 28.41 67.87
Mean 241.69 1281.93 12.76 24.09 383.19 44.49 75.20
Max 392.75 1506.09 15.18 45.10 475.92 58.42 79.98
�2

G
4.42 × 10−3*** 6433.68*** 0.33*** 51.64*** 1140.38*** 18.36*** 4.27***

�2

G×E
3.94 × 10−3*** 161.61 0.17* 10.06*** 465.95* 4.31*** 0.65***

�2

e
2.62 × 10−3 4628.20 0.26 9.86 1037.13 1.40 1.05

h
2 0.65 0.79 0.65 0.88 0.68 0.90 0.88
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392.75 mg/kg and from 1131.00 to 1506.09 mg/kg, respec-
tively (Fig. 2a). The wheat varieties of the diversity panel 
stem from different decades, ranging from registration 
dates in the late 1920s until 2013, thus allowing to assess 
the traits for temporal trends. For asparagine content, we 
observed no large change across the different decades of 
variety registration. Accordingly, no trend was observ-
able for the quality traits protein content, falling number, 
thousand kernel weight, and hectoliter weight (Fig. S1). A 
slight decrease in sulfur content over the decades (Fig. 2b, 
Fig. S1) and a slight increase in Z-SDS (Fig. S1) were 
observable in modern wheat varieties.

We evaluated the potential to predict asparagine and 
sulfur content by NIRS. To assess the goodness of fit of 
NIRS models, Williams (1987) suggested using the ratio 
of performance to deviation (RPD), which is the ratio of 
the standard error of the prediction to the standard devia-
tion of the samples. In our study, the NIRS calibration for 

asparagine and sulfur content resulted in a RPD of 2.6 for 
sulfur content and a RPD of 1.4 for asparagine content.

The genotyping-by-sequencing approach and the subse-
quent quality checks resulted in 22,122 markers with known 
map position (Li et al. 2015). A principal coordinate analysis 
indicated no clear clusters or population structure accord-
ing to the date of variety registration (Fig. S2). Based on 
the marker information and the adjusted trait values of each 
variety, the genome-wide scan identified eight putative QTL 
each for asparagine and sulfur content (Table 2, Fig. S3, 
Fig. S4). Except for the QTL on chromosome 6B, which 
was identified at a similar map position for both traits, there 
appeared to be no overlapping QTL for asparagine and sulfur 
content. For asparagine content, the detected QTL jointly 
explained 78.5% of the genotypic variance, with the QTL 
on chromosome 7B explaining the largest proportion with 
18.0%. The eight QTL detected for sulfur content jointly 
explained 60.8% genotypic variance and individually up 
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Fig. 1  Trait correlations between asparagine content, sulfur con-
tent, protein content, sedimentation volume (Z-SDS), falling number 
(FN), thousand kernel weight (TKW), and hectoliter weight (HLW) 
assessed in a diverse bread wheat population. Below the diagonal, 

the bivariate scatter plots with a locally weighted regression line are 
shown, and above the diagonal the correlation coefficients (*, **, *** 
significantly different from zero at P < 0.05, P < 0.01, and P < 0.001, 
respectively)
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to 15.9% for a QTL on chromosome 6D. Regarding QTL 
that individually explained more than 10% of the genotypic 
variance of asparagine or sulfur content, genotypes carrying 
the favorable allele at all three QTL showed considerably 
improved trait values compared to genotypes with the nega-
tive alleles at these loci (Fig. 3, Fig. S5).

We next explored the potential of genomic-assisted 
breeding by utilizing RR-BLUP and wRR-BLUP. For both 
approaches, this resulted in a higher cross-validated predic-
tion ability for sulfur content than for asparagine content 
(Fig. 4). The prediction ability of the weighted genome-
wide approach that incorporates identified QTL as fixed 
effects resulted in a substantially higher prediction ability 
for both asparagine and sulfur content. The prediction abil-
ity obtained by RR-BLUP was in a similar range as that 
obtained by Bayesian or RKHS approaches (Fig. S6).

Discussion

For a large proportion of the world population, bread wheat 
is an integral part of the daily diet and delivers besides car-
bohydrates and protein important health-promoting ingredi-
ents, especially when consumed as whole grain (cf. Awika 

2011; Huang et al. 2015). However, the heat-induced forma-
tion of acrylamide from asparagine and carbonyl sources in 
wheat products is assumed to be a health risk (Claus et al. 
2008a). During the bread-making process, the carbonyl 
sources are available in high amounts and, consequently, 
asparagine is the precursor limiting the formation of acryla-
mide in cereal products (Surdyk et al. 2004). Our aim was 
to explore the potential of wheat breeding to reduce acryla-
mide by decreasing the content of its precursor asparagine 
in wheat grains. For this purpose, we investigated the phe-
notypic variation and the genetic architecture of asparagine 
content in wheat and evaluated the potential of genomic-
assisted breeding of wheat with low asparagine content. 
Furthermore, we determined the correlation of asparagine 
content with important quality traits to evaluate the potential 
to combine low asparagine content with high bread-making 
quality.

The relation of asparagine and sulfur content 
in wheat

In our experiment, we observed no significant correlation 
between asparagine and sulfur content. Previous studies 
reported a considerably higher accumulation of asparagine 
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when wheat was grown under sulfur deficiency (Muttucu-
maru et al. 2006; Shewry et al. 2009). However, under 
non-sulfur-deprived growing conditions, an additional 
application of sulfur had no effect on asparagine content 
(Claus et al. 2006). The excess of free amino acids, such 
as asparagine, under sulfur deficiency might be explained 
by a lower synthesis rate of gluten proteins. The lower 
protein synthesis is due to a lack of required sulfur-con-
taining amino acids, leading to an excess of the non-sulfur-
containing asparagine, which cannot be fully built into 
proteins (Shewry et al. 1983, 2009). Sulfur content had no 
effect on asparagine content in our trial performed at non-
sulfur-deprived locations, illustrating that sulfur content 
is not generally associated with asparagine content, but 
may only affect it under certain environmental conditions. 
Nevertheless, it is possible that varieties with a high sulfur 
content bound in proteins are more responsive to sulfur 
deficiency and show a stronger increase in asparagine con-
tent under such conditions. This might explain the change 
of the variety ranking for asparagine content under sulfur 
deficiency reported by Curtis et al. (2018) and requires 
further research.

Selection for low asparagine content is possible

We observed a wide range of phenotypic values leading 
to a significant genotypic variance, which is the basis for 
reducing the asparagine content in wheat grains by plant 
breeding. The heritability estimate of asparagine content 
was at the level of that of protein content, so that a response 
to selection comparable to protein content can be expected 
(Table 1). The ratio between the genotypic variance and the 
genotype-by-environment interaction variance was 1.12 
for asparagine content and thus much lower than for other 
quality traits. This is in line with previous studies that also 
reported a significant genotype-by-environment interaction 
for asparagine content and substantiates the strong effect 
of the environment on this trait (Curtis et al. 2009; Corol 
et al. 2016). Consequently, evaluation of wheat varieties 
and selection on asparagine content in breeding programs 
should be based on multi-location field trials in the target 
environments.

Asparagine content showed no strong correlation with 
any of the other evaluated traits, which included the most 
important quality traits in bread wheat breeding. The sedi-
mentation volume (Z-SDS), as an estimator for baking 

Table 2  Marker–trait 
associations indicating putative 
QTL for asparagine and sulfur 
content

Chr. chromosome, Pos. chromosome position in cM, Phys. Pos. sequence start position in base pairs 
according to the bread wheat reference genome (IWGSC RefSeq v1.0), minor allele frequency (MAF) for 
which the (±) sign indicates an increasing or decreasing effect of the minor allele on the trait, pG propor-
tion of genotypic variance explained by the QTL in percent, and allele substitution (α) effect in trait unit. 
The total proportion of explained genotypic variance of all detected QTL is given underneath the line
a Marker D1097684 did not produce any hits in the BLASTn; the physical position was estimated with that 
of the highly collinear marker D1228636
b Unmapped marker for which a genetic map position was assigned based on the position of mapped mark-
ers in high linkage disequilibrium with it

Trait Marker Chr. Pos. (cM) Phys. Pos. (bp) MAF p
G

α-Effect

Asparagine D1109543 1A 155.92 307,408,774 0.22 (+) 10.92 13.51
D1097684 4A 250.70 743,752,702a 0.14 (+) 16.61 20.25
D1037340 7A 80.01 54,898,194 0.22 (+) 8.98 − 12.77
D1202736 1B 104.00 40,806,058 0.09 (+) 9.63 − 24.97
S1218159 6B 60.43 164,035,370 0.12 (+) 6.39 19.75
D2322503b 7B 249.93 750,604,024 0.44 (−) 17.96 12.58
D1249605 2D 40.78 19,847,184 0.36 (+) 6.11 13.59
D1133231 6D 187.31 466,977,892 0.40 (−) 5.89 − 13.23

78.41
Sulfur D1008850 3A 17.38 19,181,539 0.16 (+) 4.66 − 38.5

D1034244 5A 114.89 536,372,070 0.06 (+) 2.94 − 53.9
D1233578 6A 24.53 11,008,363 0.09 (+) 4.28 41.6
D3960474b 2B 75.87 58,748,715 0.45 (−) 16.22 − 27.2
D993029 6B 62.93 470,811,416 0.23 (−) 5.09 26.5
D1139179 6B 154.09 713,336,444 0.21 (+) 1.30 22.8
D2290582 7B 10.34 5,513,108 0.27 (+) 14.03 − 31.9
D3533237b 6D 1.136 4,627,044 0.21 (+) 15.86 37.8

60.83
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quality, showed the highest correlation with asparagine 
content, which, however, was still weak (r = − 0.29, Fig. 1). 
An experiment with 150 bread wheat varieties grown at 

one Hungarian location also reported only a weak correla-
tion between asparagine content and Z-SDS (Corol et al. 
2016). Thus, both results contradict conclusions of previ-
ous studies that higher quality in bread wheat would lead to 
increased levels of asparagine (Claus et al. 2006, 2008a). In 
this context, it is important to mention that these previous 
reports considered the protein content as quality criterion, 
but even for protein and asparagine content we did not find a 
strong correlation. In addition, a recent study by Curtis et al. 
(2018), which analyzed different quality groups of bread 
wheat, also observed no significant correlation between 
wheat quality and asparagine content. Thus, the absence of 
strong correlations with any of the other investigated traits 
suggests that it is possible to integrate a selection on low 
asparagine content in breeding programs, without negative 
effects on the commonly selected quality traits.

The large range of asparagine content observed among 
different varieties illustrates that the choice of variety can 
have a tremendous effect on asparagine content, and thus, on 
the potential to form acrylamide in baked products (Table 1, 
Fig. 2a). When the minimum and maximum values are con-
sidered, a reduction of 64% in asparagine is achievable just by 
choosing an appropriate wheat variety. This is more effective 
than the addition of reducing additives such as cysteine and 
comparable to reductions achieved by a prolonged fermenta-
tion process during dough preparation (Claus et al. 2008b). 
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Fig. 3  Box plots showing asparagine and sulfur content of genotypes 
carrying different alleles for the detected putative QTL explaining 
more than 10% of the genotypic variance. The two rightmost box 

plots show trait values for genotypes which carry the high or low 
allele at all three QTL. The numbers underneath the box plots indi-
cate the mean value and the number (n) of genotypes in each group
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We hypothesize that a further reduction is possible by tar-
geted crosses among lines with low asparagine content and 
pyramiding of QTL alleles for low asparagine. Thus, breed-
ing can contribute substantially to reduce acrylamide and its 
potentially negative health aspects in wheat end products.

Asparagine and sulfur content in old and modern 
varieties

Comparing varieties from different registration periods 
revealed no change in their asparagine content (Fig. 2b). 
This is in accordance with observations by Corol et al. 
(2016) who reported only a weak correlation between 
asparagine content and the year of variety registration. Thus, 
breeding efforts over the last decades have not substantially 
altered the asparagine content of bread wheat varieties. As 
it has not been directly selected for this trait, this shows that 
asparagine content has also not been the target of indirect 
selection, which substantiates the conclusion of it not being 
correlated with other agronomic traits selected for in breed-
ing programs.

For sulfur content, a slight tendency toward lower lev-
els in the more recently registered varieties was observed 
(Fig. 2b). The slight tendency toward lower sulfur content 
in the more recently registered varieties requires validation, 
but may be associated with selection for quality or yield, 
as previous studies reported a weak-to-moderate negative 
correlation between sulfur content and grain yield in bread 
wheat and spelt (Zhao et al. 2009; Rapp et al. 2017).

How to breed for low asparagine content?

Our results illustrate that the breeding progress of the past 
decades has not altered the average asparagine content of 
wheat varieties. However, our results also underline that 
plant breeding could contribute substantially to a lower 
acrylamide content in end products by developing varie-
ties with reduced asparagine content. A particularly high 
acrylamide content is formed during the production of crisp 
bread, breakfast cereals, cookies, and gingerbread (Becalski 
et al. 2003; Svensson et al. 2003; Sadd and Hamlet 2005), 
and these products generally do not require the same quality 
properties demanded for normal bread making. For most 
of these products, manufacturers usually use the soft wheat 
classes according to the UK and US quality classifications 
(Nabim 2018; U.S. Wheat Associates 2018), which approxi-
mately correspond to the Ck quality group or sometimes to 
the B quality group of the German system. An initial breed-
ing program for low asparagine varieties should therefore 
focus on those quality groups, but the extension to all quality 
groups is recommended.

The moderately high heritability and the large genotype-
by-environment interaction imply that breeding decisions 

should only be based on multi-site testing. Furthermore, 
analysis of asparagine is much more complex than for the 
quality traits routinely assessed in bread wheat, leading to 
higher costs and a considerably longer time required per ana-
lyzed sample. Consequently, we recommend the laboratory 
analysis of asparagine content for the few candidates in late 
breeding generations. This implies, however, the risk that the 
most promising candidates for low asparagine content are 
already rejected in early generations. A rapid method such 
as NIRS, which allows a rough testing of many samples in a 
relatively short time, would therefore be extremely valuable. 
However, in our case the NIRS calibration yielded a too low 
RPD of only 1.4 for asparagine content. This value might 
be increased with a broader base of samples, but the recom-
mended threshold of a RPD of at least 3 for a sample screen-
ing does not appear to be readily achievable (Batten 1998).

Alternatively, knowledge about the genetic architec-
ture might allow the utilization of genomic tools to assist 
selection on asparagine content in early generations. In our 
genome-wide association mapping, we detected eight puta-
tive QTL for asparagine content, which jointly explained 
78.5% of the genetic variance (Table 2, Fig S2). Among 
these, a putative QTL detected on chromosome 7B explained 
the highest proportion of genotypic variance with 18.4%. 
The detected QTL for asparagine content were different from 
those reported in an Australian association mapping study, 
which was based on a greenhouse experiment (Emebiri 
2014). This is in line with the strong effect of the environ-
ment on this trait and suggests that identification of QTL to 
assist breeding should be based on phenotypic data obtained 
in the target environments. Marker technologies that enable 
a high throughput can be utilized to screen a high number of 
lines at low costs. The mean value of genotypes carrying the 
favorable low asparagine content allele at the three putative 
QTL explaining more than 10% of the genotypic variance 
was 216.3 mg/kg as compared to 277.7 mg/kg for genotypes 
carrying at least two unfavorable high asparagine content 
alleles at these loci (Fig. 3, Fig. S5). Thus, if these putative 
QTL for asparagine content can be confirmed, they might be 
used for selection of genotypes with low asparagine content 
in early generations.

In general, the absence of major QTL and the pheno-
typic distribution point toward a quantitative inheritance 
of asparagine content with a complex genetic architecture. 
We therefore also evaluated the potential of genomic selec-
tion to reduce asparagine content, which resulted in pre-
diction abilities comparable to other quantitative traits in 
bread wheat (Boeven et al. 2016; Würschum et al. 2016). In 
our study, the combination of identified QTL with genomic 
selection in a weighted RR-BLUP minimized the variation 
of the prediction ability and maximized the mean prediction 
ability to 0.62 (Fig. 4). This is a level for which simulation 
studies on optimum breeding schemes showed a significant 
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increase in the annual response to selection when genomic 
prediction was included in the breeding scheme (Marulanda 
et al. 2016). In addition, for breeding programs already using 
genomic prediction tools it would mean a negligible extra 
effort to consider asparagine content as an additional trait. 
Thus, if the monetary and logistic resources of the breeding 
scheme allow the implementation of genomic selection, it 
might significantly enhance the selection gain for low aspar-
agine content in wheat.

In summary, a promising strategy to breed for low aspar-
agine content would start by determining the asparagine 
content of a range of varieties and breeding lines in multi-
location field trials, and subsequent crossing of genotypes 
with low asparagine content followed by recurrent selection. 
Marker-assisted or genomic selection appears promising to 
assist selection in early generations. In later breeding genera-
tions, the asparagine content can be assessed by laboratory 
analysis as a final selection criterion, as well as to improve 
the prediction accuracy of genomic selection. It is also con-
ceivable that institutions for variety registration might be 
persuaded to include the analysis of asparagine content as an 
additional trait in their registration trials. Such trials could 
deliver reliable data from a high number of locations, and 
in case of a successful variety registration, these data would 
be of high value to guide the food industry in their choice 
of variety. Finally, the demand for wheat varieties with low 
asparagine content will play a crucial role for the possible 
contribution of plant breeding. Breeding companies are only 
able to run costly programs for developing low asparagine 
wheat varieties when there is the prospect of an economic 
benefit from such varieties, either through higher achievable 
prices or through a gain in market share.
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