

Water vapour inter-comparison effort in the frame

of the Convective and Orographically-induced Precipitation Study

Rohini Bhawar¹, Paolo Di Girolamo¹, Cyrille Flamant⁸, Dietrich Althausen², Andreas Behrendt³, Alan Blyth⁴, Olivier Bock⁵, Pierre Bosser⁵, Barbara J. Brooks⁴, Marco Cacciani⁶, Suzanne Crewell⁷, Cedric Champollion⁸, Fay Davies⁹, Tatiana Di Iorio⁶, Gerhard Ehret¹⁰, Ronny Engelmann², Alan Gadian⁴, Christoph Kiemle¹⁰, Ina Mattis², Stephen Mobbs⁴, Detlef Mueller², Sandip Pal³, Marcus Radlach³, Andrea Riede³, Patric Seifert², Max Shiler³, Victoria Smith⁴, Donato Summa¹, Martin Wirth¹⁰, Volker Wulfmeyer³

1 DIFA, Università degli Studi della Basilicata, Viale dell'Ateneo Lucano n. 10, 85100 Potenza, Italy, E-mail:digirolamo@unibas.it
2 Leibniz Institute for Tropospheric Research, Permoser Str. 15, Leipzig, Germany, E-mail: dietrich@tropos.de
3 Institut fuer Physik und Meteorologie, Universitaet Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany, E-mail: wulfmeye@uni-hohenheim.de
4 Institute of Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, UK, E-mail: blyth@env.leeds.ac.uk
5 LOEMI - Institut Géographique National, Saint-Mandé, France, E-mail:
6 Dipartimento di Fisica, Università degli Studi di Roma "La Sapienza", Piazzale Aldo Moro, 2, 00100 Roma, Italy, E-mail:
7 Inst. f. Geophysik und Meteorologie der Universitaet zu Koeln, Kerpener Str. 13, D-50937 Koeln, Germany 8 Service d'Aéronomie, CNRS-UPMC, 4 Place Jussieu, 75252 Paris Cedex 05, France
9 Research Institute for Built and Human Environment, University of Salford, Salford, UK
10 DLR - Institut fuer Physik der Atmosphaere,Oberpfaffenhofen, D-82234 Wessling, Germany

to the formation and development and decay of precipitation

Water vapour inter-comparison effort

Sample from the intercomparison table for IOP-9c on 20 July 2007

IOP-9c	20	JULY									с (S				_	3				6			3	12	
Hours	0) 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
SuSiH	3	2 C.		5			2 2				See.												8		
DLR DIAL									08:20:49-08:22:03	09:08:54-09:09:53															
Leandre2		3					(06:57-07:08												8				8	
Radiosondes	8	8				05:08			08:08			11:11		care av	14:05			17:06							
WV DIAL						05:12	06:53	07:15		09:33				13:52	14:56										
RRL						05:12	06:53	07:15		09:33				13:52	14:56					3					
Windtracer																									
CloudRadar																8									
TARA																									
CNR MWR									-																
SuSiR																									_
DLR DIAL								07:43:46-07:44:40	08:42:18-08:42:23, 08:48:38-08:48:42							2									
Leandre2	0					2410	(06:57-07:08							-										
Radiosondes		S				05:14			08:01	09:08		11:00			14:03		16:53								_
BASIL					04:08																20:31	\square			_
Doppler Lidar	8	2	;		3						- 3			1	3					0					
CloudRadar																									
MWR	2	22	33				2							1	2	3									
SuSiM																									
DLR DIAL	2	92	33	- 2	-		8		08:13:12-08:14:04	8			3		\$	2								2	-
Leandre2	-			-				(** **	No overpass																_
Radiosondes	2	22	33		-	05:30	8		<u> </u>			11:29			2	2		17:29		2				23:29	
BERTHA	1	2					ń.		No measurements for water vapor	÷ .															
WiLi					04:51															19:25					_
MPL		Ĵ																							
CloudRadar	v							<i></i>																	_
HATPRO		2			2										1										
SuSiV	v							9																	
DLR DIAL		Ĵ.					j.	07:35:34-07:36:39							1										_
Radiosondes	о.							1																	
Leandre2	2	8						07:12-07:24			- 28			1	2	8									_
TRESS																									_
IGN RL	00:00)							08:30	9	- 4			1	2	2					20:24			23:59	
SuSiS	_						_	-																	
DLR DIAL	e.	22	8 8	_			2	07:48:07-07:49:16	2	8	12				2					2		\square			
Leandre2							10																+		
Radiosondes	2	2	3-3	- 2	5		£.	0		8	- 28		5 - S		2	3				2				2	-
Ceilometer)	2			1																				
WTR																									
MICCY																									

Possible lidar-to-lidar intercomparisons for H₂O

SAFIRE-FA20 DIAL vs BASIL Raman Lidar – EUFAR Experiment

- SAFIRE-FA20 flights in the frame of the EUFAR Project H2OLidar were performed on 16 July, 25 July and 31 July.
- Each flight had a duration of 3 hours for a total of 9 hours.
- In order to reduce statistical fluctuations, we considered for the SAFIRE-FA20 DIAL an integration time of 80 sec, corresponding to an horizontal integration length of 12-15 km. The integration time for BASIL was taken to be 1 min.
- •The vertical step of the measurements is 25 m for the SAFIRE-FA20 DIAL, while it is 30 m for BASIL. Vertical resolution is 250 m and 150 m, respectively.
- Previous studies (Behrendt, 2007a,b) revealed that comparison of airborne and ground-based lidars are possible if distance between the aircraft footprint and the ground-based system is not exceeding 10 km. Thus, in our analysis we considered only DIAL profiles within 10 km from BASIL.
- The number of considered comparisons between SAFIRE-FA20 DIAL and BASIL is 18, 6 on each day.

Comparison between *BASIL* and *SAFIRE-FA20* DIAL on 16, 25 and 31 July 07 expressed in terms of mean daily profiles

BASIL vs SAFIRE FA 20 - 16 July 07: mean profiles BASIL vs. SAFIRE F 20 - 25 July 07: mean profiles BASIL vs. SAFIRE FA 20 - 31 July 07: mean profiles 7000 7000 7000 SAFIRE FA-20 DIAL SAFIRE F-20 DIAL BASIL Raman Lidar SAFIRE-FA20 DIAL BASIL Raman Lidar Sonde 19:31 6000 BASIL Raman Lidar 6000 6000 Sonde 20:00 Sonde 06:36 5000 5000 5000 4000 4000 Heigt (m) 4000 Height (m) Heigt (m) 3000 3000 3000 2000 2000 2000 1000 1000 1000 (a) (b) (a) (b) (a) 0 6 8 10 -2 -1 0 0 2 4 6 8 10 -2 -1 0 1 2 0 2 8 -2 -1 0 1 2 6 Water Vapour mixing ratio (g/kg) Bias (g/kg) Water Vapour mixing ratio (g/kg) Bias (g/kg) Water Vapour mixing ratio (g/kg) Bias (g/kg)

Larger deviations between the two instruments are found at the top of the boundary layer, where the effect of inhomogeneities may be larger.

Mean relative bias: 3.9 % (0.08 g/kg) in the altitude region 0–4.5 km a.g.l.

Mean RMS: 13.7 % (0.97 g/kg)

Bias intercomparison BASIL Raman Lidar vs. SAFIRE-FA20 DIAL including all possible flights (EUFAR+COPS)

BASIL Raman Lidar vs DLR DIAL

Mean relative bias: -3.5 % (-0.24 g/kg) in the altitude region 0–3 km a.g.l.

Mean RMS: 13 % (0.45 g/kg)

Integrated Water vapour inter-comparison BASIL Raman Lidar vs. MWR, GPS and Radiosonde

BASIL – MWR : 7.6% (1.7g/Kg) , BASIL – GPS : 1.7 % (0.3g/Kg)

GPS – MWR: -5.9 % (-1.3g/Kg)

IGN Raman Lidar (Site V) vs SAFIRE-FA20 DIAL

Mean relative bias: -8.7 % (0.17 g/Kg) in the altitude region 0–3 km a.g.l.

IFT Lidar (Site M) vs SAFIRE-FA20 DIAL

UHOH DIAL(Site H) vs SAFIRE-FA20 DIAL

SAFIRE-FA20 DIAL vs DLR DIAL

Radiosonde inter-comparison on July 13th

226 radiosondes launched in Supersite R during COPS Sondes with different humidity sensors: Vaisala RS92, RS80-A and RS80-H 95 sondes RS92 – 13 July through 2 August, 21-30 August RS 80 launched in all other periods (88 RS80-A and 43 RS80-H).

- Vaisala RS92, RS80-A and RS80-H were launched on July 13th for the Radiosonde inter-comparison effort.
- The known different types of systematic errors for the RS80-A and H
- 1) Chemical Contamination error
- 2) Temperature dependence error
- 3) Basic calibration model error
- 4) Sensor-arm-heating error
- 5) Ground-check errors

Wang et al., 2002, Miloshevich et al., 2004, Vomel et al., 2007,

The RS92 is also known to be affected by the solar radiation which induces a dry bias in the relative humidity measured by the sensor.

BASIL Raman Lidar vs RS80H (with advanced humicap sensor)

Future work

Extend the inter-comparison to vapour sensors

to get an accurate error estimates all possible couples of water \rightarrow for the different water vapour profiling/integrated column sensors

We need to come to an **assessment** of **bias** between **different** sensors with respect to a reference sensor The DIAL!!!!