
Mathematical Programming-based
Multi-Agent Systems (MPMAS)

MpmasQL 2.52

Christian Troost
Using MPMAS with the MpmasQL toolbox
User manual & reference

MpmasQL 2.52
User manual & reference

Contact: Christian Troost

Dept. of Land Use Economics in the Tropics and
Subtropics (490d)
Hohenheim University, 70599 Stuttgart, Germany

christian.troost@uni-hohenheim.de

This manual is available at https://mp-mas.uni-hohenheim.de

Manual version 1.20, created August 14, 2014
© Christian Troost, Universität Hohenheim 2011-2014

https://mp-mas.uni-hohenheim.de

Contents

1 Installation 1

2 Overview 3

3 Model design with mpmasql: A basic MPMAS model 5

3.1 Folder structure . 5

3.2 Control file . 6

3.3 The model configuration . 6

3.4 The landscape . 7

3.5 The agent population . 8

3.5.1 Farmsteads and land ownership . 8

3.5.2 Populations, clusters and networks . 9

3.5.3 Household members, and the dynamics of aging and labor provision 9

3.5.4 Money, machinery and other farm assets . 12

3.6 Production and investment decisions . 15

3.6.1 Crop production, soils and yields . 15

3.6.2 Liquidity needs . 20

3.6.3 Labor use . 22

3.6.4 Machinery use . 24

3.6.5 Investments . 26

3.6.6 Hiring machinery . 28

3.7 Running the model . 29

3.7.1 Creating the MPMAS input files with mpmasql 29

3.7.2 Running MPMAS . 30

3.8 Scenarios . 30

3.9 Output analysis . 31

3.9.1 Defining output variables . 31

3.9.2 Importing results into stata . 32

iii

3.9.3 Importing results into R . 32

3.9.4 Transforming results into text files/databases 33

4 Model design with mpmasql: MPMAS submodels and features 34

4.1 Perennial crops . 34

4.2 Livestock . 37

4.3 Crop growth models . 38

4.3.1 CropWat . 39

4.3.2 External crop growth models . 40

4.3.3 Exogenous yield time series . 41

4.3.4 Adaptation of production decisions after harvest 41

4.3.5 Yield expectations for crops not grown . 42

4.4 Consumption . 42

4.4.1 Basic consumption model . 43

4.4.2 Advanced three-stage consumption model . 43

4.5 Harvest decision . 48

4.6 Hydrology . 48

4.6.1 EDIC: Sector-based Hydrology . 48

4.7 Fine-tuning of OSL solver . 48

4.8 Quadratic Problems . 49

4.8.1 Example starting from a scalar valued function 49

4.8.2 Example for quadratic risk programming . 50

4.9 Exogenous changes to matrix coefficients and agent-independent right hand sides . . 51

4.10 Fragmented markets: differentiate prices or LP coefficients between different groups of
agents . 51

4.11 Producer organizations . 52

4.11.1 The producer organization . 52

4.11.2 The farm agents’ marketing decision . 54

4.11.3 Linking farm agents and producer organizations 55

4.12 Diffusion of innovations . 56

4.12.1 Defining the number of segments and its thresholds 56

4.12.2 Defining innovations . 57

4.12.3 Defining availability and accessibility of innovations 58

4.12.4 Assigning agents to networks and segments 58

4.12.5 Fine-tuning the diffusion process . 59

4.13 Using agent attributes in the decision problem . 59

iv

4.14 Using plot attributes in the decision problem . 59

4.15 Household member-specific attributes . 60

4.16 Selling of assets . 61

5 Testing decision models with mpmasql and mqlmatrix 63

5.1 Interactive commands . 63

5.2 Formats of MP problems . 65

5.2.1 MPMAS input format (.dat) . 65

5.2.2 MPMAS standalone MP problem format (.mtx) 66

5.2.3 MP problems automatically saved by mpmas for debugging 67

5.2.4 MP problems saved by mpmas for debugging on request 67

5.3 Indicating the location of the model info files . 68

5.4 mqlmatrix.conf . 68

6 Preparing agent populations with mpmasdist 69

6.1 File structure . 69

6.1.1 DB . 69

6.1.2 VARIABLES . 70

6.1.3 TABLES . 70

6.1.4 MAPS . 70

6.1.5 CONTROL . 70

6.1.6 DISTRIBUTION . 71

6.2 Generating, removing, saving and importing agents 72

6.2.1 Generating agents . 73

6.2.2 Removing agents . 73

6.2.3 Saving agent populations . 74

6.2.4 Restoring agent populations . 74

6.3 Defining and manipulating attributes and assets . 74

6.3.1 Setting and using attributes . 75

6.3.2 Removing attributes . 75

6.3.3 Assigning assets and household members . 76

6.4 Distribution algorithms for attributes, assets and household members 77

6.4.1 Distributing a list of observations . 77

6.4.2 Assignment following a probability distribution 83

6.5 Spatial distribution . 86

6.5.1 Quick maps . 86

v

6.5.2 More realistic maps . 87

6.5.3 Making population, cluster, network, sector and catchment maps 90

6.6 Varying agent populations . 90

References 92

A Command line options 93

A.1 mpmasql . 93

A.2 mqlmatrix . 94

A.3 mpmasdist . 95

A.4 mpmas . 95

B mpmasql file reference 99

B.1 Control file . 99

B.2 Model configuration . 102

B.3 Model data file . 106

B.3.1 [GLOBALS] . 107

B.3.2 [MPMAS PARAMETERS] . 107

B.3.3 [MPMAS TABLES] . 112

B.3.4 [USER TABLES] . 124

B.3.5 [USER VARIABLES] . 124

B.3.6 [INSTANCES] . 124

B.4 Model structure file . 125

B.4.1 [ACTIVITY TYPES] and [CONSTRAINT TYPES] 125

B.4.2 [DEFAULTS] . 127

B.4.3 [MODEL] . 127

C mpmasql function language 146

C.1 Numbers and Strings . 146

C.2 Operators . 146

C.3 Arrays . 147

C.4 Functions . 148

D Version history and changelog 151

D.1 Version History . 151

D.2 Changes from version 1.03 to 2.00 . 151

D.2.1 Conversion control file (.ini) . 153

D.2.2 Configuration file (.cfg) . 153

vi

D.2.3 Data file (.var) . 154

D.2.4 Model structure file (.cll) . 155

D.3 Changes in 2.03 . 157

D.4 Changes in 2.04 . 157

D.5 Changes in 2.08 . 157

D.6 Changes in 2.10 . 157

D.7 Changes in 2.12 . 158

D.8 Changes in 2.14 . 158

D.9 Changes in 2.16 . 158

D.10 Changes in 2.19 . 158

D.11 Changes in 2.20 . 158

D.12 Changes in 2.21 . 158

D.13 Changes in 2.22 . 159

D.14 Changes in 2.23 . 159

D.15 Changes in 2.24 . 159

D.16 Changes in 2.26 . 159

D.17 Changes in 2.27 . 159

D.18 Changes in 2.28 . 159

D.19 Changes in 2.32 . 159

D.20 Changes in 2.33 . 159

D.21 Changes in 2.36 . 160

D.22 Changes in 2.39 . 160

D.23 Changes in 2.40 . 160

D.24 Changes in 2.41 . 160

D.25 Changes in 2.47 . 160

D.26 Changes in 2.48 . 160

D.27 Changes in 2.52 . 161

vii

Chapter 1

Installation

mpmasql has been developed for GNU/Linux operating systems. You may have to install certain
additional software (Database, perl interpreter and certain Perl modules). You also need a working
internet connection, so missing Perl modules can be installed during the installation.

OS GNU/Linux (tested on Ubuntu 10.04/ 12.04)

perl The use of mpmasql requires the installation of a perl interpreter on your computer. Most Linux
distributions come with one included. mpmasql 2.52 was tested under perl v5.10.1 (Ubuntu 10.04).
Non-standard Perl modules will be installed by the mpmasql installation script.

Install mpmasql Installing the main program requires a working internet connection.

1. Download and extract mpmasql.zip,

2. Open a terminal and change into the directory mpmasql_release_252

3. If you do not want to use mpmasdist, run sudo ./install_mpmasql

4. If you want to use mpmasdist, run sudo ./install_mpmasql -x. (This installs also the addi-
tional Perl modules needed for mpmasdist. You can also skip this now and run it later whenever
you decide to use mpmasdist.)

Installing OSL solver library The mpmasql installation script will automatically install the mpmas
executable in /usr/local/bin. The mpmas executable requires the IBMOSL solver library to run and
this has to be installed by the user. (Please consult i490d@uni-hohenheim.de if you have problems
installing this library.)

1. Copy v3_osllib_linux.tar to your home folder and extract it

2. From the extracted v3_osllib_linux folder extract osllib.tar

3. Copy the extracted subfolder lib/ and the install_osl program to your home folder, e.g. /home-
/lib/ (if this folder does not exist, create it)

4. Open a terminal, cd to your created folder (e.g. exampleuser) and type sudo ./install_osl

osllib academic and press enter. The process for retrieving a license will start. To accept the
license type yes if asked and enter username and institution

1

5. Open the file .bashrc in your home directory with a text editor (it is a hidden file, if you use the
file browser to find the file you need to tick View -> Show hidden files) and append the following
lines (note: the format is important here):

if ["$LD_LIBRARY_PATH" = ""]; then

export LD_LIBRARY_PATH =~/lib

else

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH :~/ lib

fi

Database Although not strictly required, mpmasql has been developed for the use with MySQL
databases. MySQL is open source. Under Linux, it is either already included in your distribution
or you can get it from your Linux repository. (Install the packages mysql-client and mysql-server.)

You have to fill your database with data, of course, before you can use mpmasql to create MPMAS
input files from it. Generally you are very flexible in the set-up of your databases, as long as you can
provide tables in the required format to mpmasql with one single (but possibly nested) SQL “SELECT”-
statement.

Don’t forget to create a (or choose an existing) database user account for your script, grant use and
select privileges to all databases you want to use with mpmasql, and adapt the database connection
entries in the conversion control file.

If you want to use the tutorial database, you can create it once you have installed a MySQL database
server on your computer. Use theMySQL client of your choice to create a schema named mpmasql_example_db
and a user account for your model to which you give access to the new schema (The example model
uses the username ’testuser’ and password ’testuse’, but you can adapt that in example.ini.). Open
the script create_example_db.sql in the subfolder example_db/ in a graphical client interface like
MySQL Workbench and run it, or use the command-line client:

mysql -u <username > -p mpmasql_example_db < create_example_db.sql

2

Chapter 2

Overview

MpmasQL is a toolbox that contains a collection of tools that assist you in working with the multi-agent
model MPMAS. All of these tools are command line programs, i.e. they do not have a graphical user
interface, but are intended to be run using the Linux terminal. Input data for the tools is provided using
text files and database connections.

Apart from providing the current version of the mpmas executable, the MpmasQL package contains
the following tools:

mpmasql is the core tool in the toolbox, used to prepare input files for mpmas.

mqlmatrix can be used to test mixed integer programming matrices, which are used to model several
decisions in mpmas.

mpmasdist can be used to create agent populations based on statistical distribution functions and
theoretical assumptions, including random distribution of agricultural plots over study areas

Figure 2.1 provides an overview of themodeling process using theMpmasQL toolbox. The basic idea
is to store any empirical information you gathered in the field or from secondary sources in a relational
database (e.g. MySQL) in a structured and normalized form.1 Spatial data should be processed and
stored using GIS software and linked to the database (e.g. the GIS maps could contain information
about the spatial distribution of soil types, but any further information on how the different soil types
affect production should be stored in the database). Often detailed information about all the individuals
to be represented as agents in the model is not available. In those cases, mpmasdist can help you
create artificial, but representative agent populations using statistical information and heuristic rules.

Based on your theoretical and empirical knowledge about the processes and interactions relevant
for your simulations, you can then create a model design, which you describe in three text files using
the model design format required by mpmasql. This model design defines the model structure and
contains references to information in the database, but does not contain the data itself. Further, you
create a control file instructing mpmasql, which model design and database to use, which scenarios
to create and how to adapt the model for different scenarios.

You can then run mpmasql and it will create the input files for mpmas model description files and
importing scripts for statistical software. Whenever you add or update something in your database
that is referenced in the model design, this will automatically be reflected in the mpmas input the next
time you run mpmasql, because the model design only contains references to the data and not the
data itself. Spatial input for mpmas can be created directly with GIS software.

After you ran mpmas you can use the importing scripts created by mpmasql to import the mpmas output
into a statistical software package for analysis (currently Stata and R are supported).

1http://en.wikipedia.org/wiki/Database_normalization

3

http://en.wikipedia.org/wiki/Database_normalization

Database
(MySQL)

mpmasql

MPMAS
input files

(.dat)

Model design
configuration (.cfg)

structure (.cll)
data (.var)

MPMAS

control file (.ini)

MPMAS
input maps
(ASCII, .txt)

MPMAS
output files

(ASCII, .out)

Model info
 (.txt/.do/.R)

mpmasdist

GIS

control file (.dst)

R/
stata

Commented
input files

 (.txt)

Results

Empirical data collection

mqlmatrix

MPMAS
debug files

(ASCII,
.mip/.mtx)

Verifi-
cation

MilpCheck

Figure 2.1: Overview of the modeling process with MPMAS using the MpmasMySQL setup

4

Chapter 3

Model design with mpmasql: A basic
MPMAS model

mpmasql prepares mpmas input files using data stored in a database and a model design described in
three text files: The model configuration file (.cfg), the model structure file (.cll) and the model data file
(.var). Despite its name the model data file does not contain the actual data (except for some simple
parameters), but instructs mpmasql which data to use from the database. A fourth text file, the control
file (.ini) tells mpmasql which model design files and which database to use, where to write its output
and which scenarios to create.

Note: The files which are described in this chapter are contained in the mpmasql_tutorial_files/

folder of mpmasql.zip. In the subfolder db/ you find the backup of the corresponding mysql database.
You can load this to your server by first creating the corresponding schema example_db on the server,
and then run

mysql -h hostname -u username -p example_db <

create_mpmasql_example_db.sql

in a terminal.

3.1 Folder structure

It is convenient to keep all files for a model application in one folder. The following subfolder structure
is suggested (but can be adapted according to your own needs, if you adapt mpmasql files and mpmas

command line options).

<modelversion >/

cfg/ -> mpmasql model design files

input/

dat/ -> input files for MPMAS

gis/ -> input maps for MPMAS

out/ -> MPMAS writes output here

test/ -> MPMAS writes debugging info here

xlsInput/ -> commented input files

The mpmasql control file should be saved at the lowest hierarchy level, i.e. in the folder that bears
the name of the model version.

5

3.2 Control file

The content of the control file looks like this:

[INPUT]

CONFIGURATION = cfg/example.cfg

STRUCTURE = cfg/example.cll

DATA = cfg/example.var

DBTYPE = mysql

DB = example_db:localhost

DBUSER = username

DBPWD = somepassword

[OUTPUT]

OUTDIR = input/dat/

OUTDIR_CM = xlsInput/

PREFIX = example

The first three entries under the [INPUT] headline tell mpmasql the names of the model design files
and that they are located in a subfolder called cfg/. The next four entries contain all the information
needed to connect to the database: Type, database name and host, user name and password. If you
do not specify the password in the file, you will be asked for it at runtime.

The three entries in the [OUTPUT] section tell mpmasql to write theMPMAS input files to the subfolder
input/dat/, the commented files to the subfolder xlsInput/ and use "example" as the first part of
the filename. (The rest of the filenames consists of a scenario name in case you use the scenario
function, and fixed parts required by MPMAS to recognize the files.)

There are many more entries you can include into the control file. They will be explained in later
sections. The full overview is given in appendix B.1.

3.3 The model configuration

In the model configuration, you control the general setup of your MPMAS model. When does the
simulation start, how many years should it run, which submodules shall be used and so on. Your
configuration should at least contain the following entries:

[TIME]

STARTYEAR = 2010

STARTMONTH = 7

STARTDAY = 1

ENDYEAR = 2030

ENDMONTH = 6

ENDDAY = 30

SEASONSTART = 10

SEASONEND = 9

NORTHERN = 1

[LANDSCAPE]

NSOIL = 3

6

The first six entries under the headline [TIME] mean that the simulation shall cover the time span
from July 1, 2010 to June 30, 2030, i.e. 20 simulation years. The next two entries inform MPMAS that
the cropping season starts every year in October and ends in September, and setting NORTHERN
to 1 indicates that the study region is situated in the Northern hemisphere (choose 0 for Southern
hemisphere). The NSOIL entry informs MPMAS how many different soil types it has to expect in the
soil input maps.

Again, there are many more entries you can include into the configuration file. They will be explained
at the appropriate places in later sections of this manual. The full overview is given in appendix B.2.

3.4 The landscape

Land is the defining resource of agriculture and no MPMAS model can do without a landscape, which
is defined using maps in ESRI ASCII raster format. Maps in this format are just text files, meaning
you can create them in a simple text editor or spreadsheet software. Sooner or later, however, when
your model gets larger it is much better to use real GIS software1, nearly all of which can create and
read maps in this format.

Each map file in ESRI ASCII format starts with lines of metadata:

NCOLS 5

NROWS 5

XLLCORNER 3513136

YLLCORNER 5403903

CELLSIZE 100

NODATA_VALUE -1

The first two lines indicate the number of columns and rows of the cell raster (grid). So, in the
example, the map has 25 cells, distributed over five rows and five columns. The next two entries
indicate the geodetic coordinates of the lower left corner of the lower left cell of the grid. These values
do not matter to MPMAS, but are important if you import the maps into a GIS and want to compare it
to other spatial information. The cell size indicates the size of one cell (i.e. the length of one side), and
the sixth line says that all cells containing a -1 should be regarded as empty. After this header comes
the actual cell grid. Each line equals to one row of the grid, and in each row there are NCOLS numbers
separated by spaces (tabs do work too for MPMAS) , each containing the actual value observed at
that point in the landscape.

Three files define the study area, its subdivisions (villages, administrative areas, hydrological catch-
ments, sectors or similar), and the different terrains (e.g. soil types) that provide different opportunities
for agricultural production. Subdivisions are required for certain submodels (e.g. the EDIC model),
but should be avoided if not necessary. Any farm agent you later on place into the landscape can
only own and rent land in the sector, where his farmstead lies. All map files should be placed into the
input/gis subfolder.

Study area The map containing the study area delimitation is called CatchMap00Catchment.txt,
for historical reasons.2 It might look like this, indicating that the three cells in the upper right corner
do not belong to the study area.

NCOLS 5

NROWS 5

XLLCORNER 3513136

YLLCORNER 5403903

1Have a look at Quantum GIS (www.qgis.org) if you look for a free, open-source GIS.
2Theoretically it is possible to have several study areas, or hydrological catchments, in onemodel, but this feature is currently

still experimental. Files of additional catchments would then be named CatchMap01Catchment.txt.

7

www.qgis.org

CELLSIZE 100

NODATA_VALUE -1

0 0 0 -1 -1

0 0 0 0 -1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Sectors Themap containing the subdivision of study areas into sectors is called CatchMap00Sector.txt.
In the usual case of no subdivisions, it can look the same as the study area file, defining just one sector
with the ID 0.

Terrains The different types of terrains you want to distinguish in your landscape, have to be num-
bered starting from zero. As the soil type is usually a major determinant of agricultural production
the corresponding map is called CatchMap00Soil.txt. However, the soil types in this map do not
necessarily have to refer to pedological soil types, but could also be used e.g. to distinguish between
irrigable and non-irrigable soil, flat and inclined areas, and so on. The following example shows a
map with three soil types. (Remember to set the model configuration parameter NSOIL accordingly).

NCOLS 5

NROWS 5

XLLCORNER 3513136

YLLCORNER 5403903

CELLSIZE 100

NODATA_VALUE -1

0 0 0 -1 -1

0 2 2 2 -1

1 0 2 2 1

1 1 2 0 0

0 0 1 1 0

3.5 The agent population

A multi-agent model needs, of course, a number of agents, which we call the agent population. In
MPMAS themain class of agents are farm households. (In fact theremay be several agent populations
with different characteristics, e.g. different ethnicities, and also very different types of agents. But we’ll
come to that later.)

3.5.1 Farmsteads and land ownership

Every farm household owns a farmstead, which is identified using an ID in the farmstead map,
CatchMap00Farm.txt. This farmstead ID is the identifier of the farm in all other model design files.
You can freely choose any integer number greater than zero, and smaller than 999900000. E.g. the
following map contains three farmsteads.

NCOLS 5

NROWS 5

XLLCORNER 3513136

YLLCORNER 5403903

CELLSIZE 100

8

NODATA_VALUE -1

-1 -1 300 -1 -1

-1 -1 -1 -1 -1

-1 -1 -1 15 -1

67 -1 -1 -1 -1

-1 -1 -1 -1 -1

Every farm household should also own some land. It definitely owns the land where its farmstead
is located, but it can of course also own other cells, as long as they lie in the study area, in the same
sector as the farmstead, and on a cell for which a soil type has been defined. The land properties of the
farm household are specified in the property map, CatchMap00Prop.txt. In our example, household
300 owns seven plots, household 15 owns five plots and household 67 owns eight plots. Two plots
are owned by no one.
NCOLS 5

NROWS 5

XLLCORNER 3513136

YLLCORNER 5403903

CELLSIZE 100

NODATA_VALUE -1

300 300 300 -1 -1

67 300 300 15 -1

67 15 300 15 15

67 15 300 67 -1

67 67 67 -1 67

3.5.2 Populations, clusters and networks

Farm households can belong to different populations and different communication networks. Differ-
ent populations may have different life expectancies, birth rates and labor force, while communication
networks are relevant for simulating the diffusion of innovations (see 4.12) and may face different con-
ditions for financing. Populations may be further subdivided into clusters, which are used during the
initial allocation of farm assets (see ??). Clusters, networks and populations are counted from zero
and, for historical reasons, the association of a farm household with populations, clusters and net-
works has to be specified in maps. For our example and assuming all agents are associated with the
same population, cluster and network, all three maps (CatchMap00Pop.txt , CatchMap00Clu.txt
and CatchMap00Netw.txt) would look like this:
NCOLS 5

NROWS 5

XLLCORNER 3513136

YLLCORNER 5403903

CELLSIZE 100

NODATA_VALUE -1

-1 -1 0 -1 -1

-1 -1 -1 -1 -1

-1 -1 -1 0 -1

0 -1 -1 -1 -1

-1 -1 -1 -1 -1

3.5.3 Household members, and the dynamics of aging and labor provision

Every farm household consists of a number of household members. Before you can assign house-
hold members to a household, you first have to define, which types of household members you want

9

to be able to assign. You do so using a table of five columns, which you assign to the entry HOUSE-
HOLD_MEMBER_TYPES, which is part of the section [MPMAS TABLES] in the model data file.

You do not put the table itself into the model data file, rather you provide a link to the table, either
by specifying the name of a text file containing the table in comma-separated format, or by providing
an SQL statement that retrieves a table of the required format from the database. The advantage
of a database query is that you do not actually need to have a table of the required format in the
database, you just need to be able to formulate a query that results in a suitably formatted table. For
the definition of household member types, this is not so important, but for many other tables it gives
you the opportunity to store your data in a way that is best suited for the data, and then extract a table
format that suits your model by queries. If you change your model setup, or design scenarios, you
then simply need to adapt your queries and not your tables. For the following we will always assume
that you use SQL queries to specify tables.

A suitable query for the definition of household member types could look like this:

[MPMAS TABLES]

HOUSEHOLD_MEMBER_TYPES = (sql) { "SELECT hh_member_type , career ,

sex , lowage , upage FROM tbl_hh_member_types "}

The column names are not actually important, what is important is the order of the columns. The first
column gives a name to the household member type. It serves as an identifier for the type. Identifiers
are used very much in mpmasql and may consist of the letters a-z or A-Z, the numbers 0-9 and the
underscore. The second column links the member type to a course of life or career that describes
what happens to the person when it gets older. This is discussed in detail a bit further below. The
third column indicates the gender, where 0 indicates female and 1 indicates male. The fourth and
fifth column the lower and upper age. You could be very specific and define a member type for each
potential age a household member might have, or you could be rather coarse and give an age range,
then MPMAS will choose the age the person has at the beginning of the simulation randomly from
within this range.

The table in your database could look like this:

hh_member_type career sex lowage upage
boy male_farmer 1 0 16
young_man male_farmer 1 17 30
man male_farmer 1 31 60
elder_man male_farmer 1 61 80
girl female_farmer 0 0 16
young_woman female_farmer 0 17 30
woman female_farmer 0 31 60
elder_woman female_farmer 0 61 80

Now, you can use these householdmember categories to assign householdmembers to each house-
hold. You do this with the entry HOUSEHOLD_COMPOSITION, which is also part of the [MPMAS
TABLES] section. This table has three columns, the first refers to the farm household by its farmstead
id, the second to the type of household member and the third to the number of members of that type,
which form part of the household.

HOUSEHOLD_COMPOSITION = (sql) {" SELECT farmstead_id ,

hh_member_type , quantity FROM tbl_hh_members "}

The corresponding table in your database could look like this:

farmstead_id hh_member_type quantity
300 man 1

10

300 woman 1
300 boy 2
300 girl 1
67 young_man 1
67 elder_woman 1
67 elder_man 1
15 young_man 1
15 young_woman 1

This table provides the composition of households at simulation start. Unless you turn off aging of
households (setting OFFHHAGEING to 1 in the model configuration), they will get older when the
simulation years pass. This has consequences for the type and amount of labor they can provide, the
probability of dying or giving birth, and in case you use an advanced consumption model, also for the
amount of food they need.

The corresponding information is given in the table HOUSEHOLD_DYNAMICS, which has at least
seven columns.

HOUSEHOLD_DYNAMICS = (sql) {" SELECT pop , career , upperage ,

labgrp , labprov , mortality ,

fertility

FROM tbl_hh_dynamics "}

The first column refers to the population for which the information holds (remember that we could
have several agent populations), the second is the code for the career and the upper bound of the age
range for which the following information holds. (The lower bound is given by the next lowest upper
bound in another line referring to that career or zero.) The fourth column specifies which type of labor
the household member is able to provide at that age. This gives you the possibility to distinguish
different types of labor to reflect cultural, legal or educational constraints to certain activities. The fifth
column gives the amount of labor (in the unit of your choice) a household member can provide at that
age in one year. The sixth and seventh columns give the probability of dying, respectively giving birth
to a child, in each year of the age range.

For example, a household dynamics table could look like the following, if we want to distinguish only
one type of farm labor and take the yearly work power of an adult man as a reference unit for the labor
provision.

pop career upperage labgrp labprov mortality fertility
0 female_farmer 12 farm 0 0.01 0
0 female_farmer 16 farm 0.3 0.001 0.001
0 female_farmer 21 farm 0.9 0.003 0.003
0 female_farmer 45 farm 0.9 0.003 0.03
0 female_farmer 70 farm 0.9 0.005 0
0 female_farmer 90 farm 0.2 0.003 0
0 female_farmer 91 farm 0 1 0
0 male_farmer 12 farm 0 0.01 0
0 male_farmer 16 farm 0.3 0.001 0
0 male_farmer 25 farm 1 0.008 0
0 male_farmer 70 farm 1 0.004 0
0 male_farmer 90 farm 1 0.3 0
0 male_farmer 91 farm 1 1 0

11

3.5.4 Money, machinery and other farm assets

Now, you will probably assign some other resources or assets to farm households, apart from land.
This is done using a table called ASSET_ENDOWMENTS. It looks very similar to the household
composition table:

ASSET_ENDOWMENTS = (sql) { "SELECT farmstead_id , asset , quantity

FROM tbl_farm_assets" }

Cash

One of the basic assets of a household is cash, or liquidity as it is called in MPMAS. You have two
options, how to assign cash to a household in the model. You can give a default amount of cash
to every household, by setting the LIQUIDITY entry in the [MPMAS PARAMETERS] section of the
model data file. E.g.

[MPMAS PARAMETERS]

LIQUIDITY = 1000

Now every household in the model would have 1000 monetary units cash at the start of your simula-
tion. You can override this default for every household by assigning the special asset ‘liquidity’ to a
household. E.g. if the table tbl_farm_assets in your database contains the following lines,

farmstead_id asset quantity
300 liquidity 8000
15 liquidity 250

Household 300 would start with 8000 and household 15 with 250 monetary units, while household
67 would start with the default 1000 monetary units.

Other assets

Cash and land are the only assets that are predefined by MPMAS. All other assets have to be defined
in the model structure. So let’s say you want to assign some basic implements for crop production
to the agents, e.g. ploughs and tractors. While you do have to create a specific asset plough and
an asset tractor, these will look very similar as both are machinery and only differ in some of their
attributes, e.g. price and lifetime. Later on, other model elements, like LP activities and constraints,
will be associated to these assets and they will also look very similar and only distinguish itself in a
few coefficients. We can therefore create a blueprint for machinery that tells mpmasql, which model
elements need to be created for each type of machinery. Objects that share similar characteristics
can be said to belong to a class, e.g. in our case the class ‘machinery’. The objects that belong to a
class are called its instances, i.e. in our case a plough, a tractor or a seeder would all be instances
of the class machinery.

Defining assets Blueprints for classes are defined in the [MODEL] section of the model structure
file.
[MODEL]

#class MACHINERY {

#asset machinery_asset {

name #= #this(instance)

div #= 0

12

lifetime #= #table(machinery , 2, [#this(instance)])

acqcost #= #table(machinery , 3, [#this(instance)])

eqshare #= 0.25

irate #= #var(INTEREST_LGCRD)

}

}

The above code tells mpmasql that for every instance of the class MACHINERY, an asset, which we
identify as machinery_asset has to be created. The name of the asset, which is used as an infor-
mation in commented input and model description files, shall simply be the identifier of the instance.
Machinery assets are indivisible, i.e. you cannot buy half a tractor, so we set the ‘div’ attribute to 0.

The expected use life of the asset (lifetime) can be found in the second column of the user-defined
table ‘machinery’ in the row, whose key contains the identifier of the instance. The price that was or
has been paid when buying the asset (acqcost), can be found in the third column of the same table.
When such an asset is bought, the buyer has to pay 25% of the price in cash (eqshare), the rest can be
financed using a credit that has the same duration as the use life of the asset at an interest, which is the
same for all assets of the class machinery and equal to the MPMAS parameter INTEREST_LGCRD,
i.e. the interest on long-term credits.

Similar to household members also assets get older every year. Standard assets, however, do not
change their characteristics like household members when getting older. However, their lifetime is
limited and once it is reached they have to be renewed or the agent has to do without them. During
their lifetime, the household has to pay debt service for the share it did not finance itself and the
associated interest. (There are special assets like livestock or perennial crops, which do change their
characteristics with age, but these will be discussed in the next chapter.)

The functions \#this(), \#table() and \#var() constitute part of the mpmasql function language
(MFL) and are used to form expressions that help you make values of model elements (or even the
structure of model elements) dependent on instances or scenarios. MFL expressions can be used
at many different locations in the model design files. A full reference of all the functions is given in
section C.

We now still have to tell mpmasql, which instances are part of the MACHINERY class and provide the
data that we referred to in the class definition. First, we create the instance list in the [INSTANCES]
section of the model data file.
[INSTANCES]

MACHINERY = [tractor , plough , seeder]

In the example, we have included three instances into the model by including their identifiers into the
instance list for the machinery class. An identifier must consist only of letters [a-z, A-Z], digits and
underscores. The identifier is used to create a unique identifier for the assets, which consist of the
instance identifier, an underscore and the identifier you used in the element definition, i.e. in our case,
the model will contain assets of type tractor_machinery_asset, plough_machinery_asset and
seeder_machinery_asset.

Second, we have to provide the table ‘machinery’, which contains the data on lifetime and acqui-
sition cost. This is a user-defined table, because contrary to the MPMAS tables, the format is not
predefined by MPMAS. The most important thing you have to define is, how many key columns your
table contains. Key columns are used to identify the rows in your table. This key can consists of the
content of one or several columns, which have to be the first columns in the table. In our case, we
need only key column, which contains the instance identifier, i.e. the type of machinery.

Definitions of user tables are placed into the [USER TABLES] section of the model data file, and are
of the following format:
tablename = (tabletype , number of key columns) { tablesource: MFL

expression that can

13

span several lines and results in an SQL query

for sql tables , and

a filename for ascii tables

}

For example,

machinery = (sql ,1) {" SELECT machinery , lifetime , acqcost FROM

tbl_machinery "}

The corresponding table might look like this:

machinery lifetime acqcost
tractor 10 10000
plough 6 1000
seeder 12 3000
harrow 8 760
cultivator 8 900

When mpmasql now creates the asset for the tractor instance, it will encounter the MFL expression
#table(machinery, 2, [#this(instance)]) for the field lifetime. The first thing it will do is re-
place #this(instance) by ‘tractor’, leaving it with #table(machinery, 2, [tractor]). It then
looks into the table machinery, looks for the row which has a value equal to ‘tractor’ in the first column
and takes the value it finds in the second column of that row, and then knows that the lifetime of a
tractor is 10 years.

Note that the table contains information for more types of machinery than we used in our model. We
simply deliberately chose only to consider tractors, ploughs and seeders, the additional information
is read by mpmasql but remains unused. If we want to change that and include all the machinery for
which there is information in the table, we can use the #table function in the definition of the instance
list:
[INSTANCES]

MACHINERY = #table(machinery , 0, [])

The third argument to the #table function is the so called key array, whenever it is empty the function
simply returns all different entries in the first column of the table, so in our case it would be equivalent
to writing
[INSTANCES]

MACHINERY = [tractor , plough , seeder , harrow , cultivator]

Themain difference is, that when you add a row to the table machinery, e.g. information for a combine,
this will automatically be added to the instance list in the first case, but not in the second.

Finally, we still have to set a value for the MPMAS parameter INTEREST_LGCRD. This is done in
the [MPMAS PARAMETERS] section of the model data file. E.g. if the interest rate for long-term
financing is 8%, we should wirte the following:
[MPMAS PARAMETERS]

INTEREST_LGCRD = 0.08

Assigning assets to agents The asset definitions we just created, can now be used to assign
assets to the agents. We simply have to add corresponding entries to the AGENT_ENDOWMENTS
table we already introduced above. E.g. if household 300 owns a full set of machinery, household 67
only a plough and household 15 no machinery at all, the table would have to look like this:

14

farmstead_id asset quantity
300 liquidity 8000
15 liquidity 250

300 tractor_machinery_asset 1
300 plough_machinery_asset 1
300 seeder_machinery_asset 1
300 harrow_machinery_asset 1
300 cultivator_machinery_asset 1
67 plough_machinery_asset 1

3.6 Production and investment decisions

We now have defined the households, its members and assets, and what will happen to them in-
evitably during the course of their life. The most interesting thing about an agent, however, is that it
can act according to his own decisions. In MPMAS, the most important decision for a farm household
is what it grows or produces this year in order to make a living. This decision is modeled using con-
strained mathematical programming, i.e. the agent chooses the production plan which is optimal with
respect to his objective, in most cases maximizing expected income, while at the same time feasible
given all technical, financial and resource constraints to production and satisfying all other needs and
objectives of the household, e.g. not going bankrupt or producing enough food to feed the household
members in the case of subsistence farmers. The decision is modeled using mixed integer linear
programs and thus provides a very flexible tool, that can be adapted by the model user to reflect all
kind of empirical or theoretical situations.

A linear program consists of equations for the objective and the constraints, which contain linear
combinations of variables (activities), and is often presented in matrix format, where the columns
represent variables and the rows the equations and each matrix cell represents the coefficient of the
variable in the equation. Often only non-zero coefficients are included into the matrix. Equations
are equalities or inequalities and are usually arranged such that all terms containing variables are
arranged on the left hand side of the (in)equality sign and all constant terms on the right hand side.

3.6.1 Crop production, soils and yields

Formulating equations For our farm household, we will first consider two kinds of activities. It can
produce a certain range of crops and it can sell them. To reflect this, we need to include a production
and a selling activity S for each crop c into the model. These activities are connected by a balance
equation, i.e. you cannot sell more of a crop c than you produced. Production is equal to the yield
(yc) times area on which you produced the crop Ac:

Sc ≤ yc ∗Ac (3.1)

Rearranged such that all variable elements are left and all constant elements right. In this case there
is no constant element, thus the right hand side is zero.

Sc − yc ∗Ac ≤ 0 (3.2)

Of course, the household cannot cultivate an infinite area, but is restricted by the amount of land it
owns. Further, we expect different yields on different soil types and consequently we have to distin-
guish production depending on the soil type j it is produced on. The equation then becomes

15

Sc −
∑
j

yc,j ∗Ac,j ≤ 0 (3.3)

.

The area restriction, aslo distinguished by soil types, can be formulated as follows

∑
c

Ac,j ≤ Nj , (3.4)

where Nj is the amount of land of soil type j the household owns.

The objective equation, representing the income of the agent, would contain the revenue of his crop
sales, i.e. price (pc) times amount sold, minus the production cost, i.e. variable cost (vc) times area:

max! pc ∗ Sc − vc ∗Ac (3.5)

Implementation in mpmasql Again using the concept of classes and instances, looking at the above
we can say we are dealing with two classes, the class CROPS and the class SOILS, and we can
already add two instances lists for these two classes in the [INSTANCES] section of the model data
file:

SOILS = #steps(0, #var(NSOIL) - 1, 1)

CROPS = [wheat , barley , maize]

While we provide the CROPS instances explicitly, the SOILS list is formed using the \#steps function.
To create a list of numbers starting from 0 and ending with the number of soils in the model minus
one, with a distance of 1 between each number and the neighboring. In our case this is equivalent
to writing [0,1,2], i.e. the soil type identifiers we used in the map. However, whenever we start using
more soil types, the list will be automatically updated.

Next, we should create the blueprints for each class in the model structure file:

#class CROPS {

#constraint balance {

name #= #this(instance) ~ "_balance"

unit #= t

type #= product_balance

eqtype #= 1

}

#activity sell {

name #= "sell "~# this(instance)

type #= MASsell

unit #= t

orow #= #table(prices , 3 , [#this(instance), #var(STARTYEAR) -

1])

orow_#foreach(YEARS) #= #table(prices , 3 , [#this(instance),

#this(field ,1)])

#this(instance)_balance #= 1

}

#activityby production_on_soil #foreach(SOILS) {

name #= "produce " ~ #this(instance) ~ " on soil " ~

#this(by ,1)

unit #= ha

16

type #= crop_production

orow #= -1 * #table(variable_costs , 2 , [#this(instance)])

#this(instance)_balance #= -1 * #table(yields , 3,

[#this(instance), #this(by ,1)])

#this(by ,1) _soil #= 1

}

}

#class SOILS {

#constraint soil {

name #= "Area of soil " ~#this(instance)

type #= MASsoil

}

}

This looks quite complicated at the first glance, but we will go through the fields and expressions
one by one.

name, unit Like with assets, the ‘name’ field in all model elements contains a description of the
activity respectively constraint that will appear in the commented model files and the model info. The
‘unit’ field indicates the unit of the variables, respectively the terms in the equation. It serves also only
informative purposes and is not used by MPMAS itself.

eqtype The ‘eqtype’ field of a constraint indicates the equation sign used between left and right
hand side. A one stands for less or equal(≤), a two for greater or equal (≥), and a three for equal
(=). Less or equal is the default, so we could also omit this in our case, as we have done for the soil
constraints.

type The type field indicates special elements, e.g. the selling activity is of the type ‘MASsell’.
Selling activities are special, because product prices may change over time and have to be used to
recalculate income in case yields were not as expected (when using a crop growth model). Also the
soil constraints are special, because MPMAS needs to insert the nj , the soil owned by the household,
on the right hand side, and the ‘MASsoil’ type help it to recognize the corresponding constraints. The
actual identifier (‘soil’) can be freely chosen, so you could also name it ‘terrain’ or ‘land_class’ or
whatever you like. All special types start with‘MAS’. You can also use your own types. These are
used to group model elements and help you navigate through large matrices, e.g. using mqlmatrix

(see chapter 5).

We have used the types product_balance and crop_production, which we have to include into the
lists of user defined activity, respectively constraint types, which are located under the corresponding
headings at the top of the model structure file.

[ACTIVITY TYPES]

crop_production

[CONSTRAINT TYPES]

product_balance

orow The ‘orow’ field contains the objective function coefficient of an activity. More specifically for
the selling activities, it contains the objective function coefficient of the selling activity in the first year,
or in other words the price the household expects to receive in the first year. As shortly mentioned

17

before, prices may change over time and usually the price they will be able to sell their crop for at the
end of the season is not known to the household, while making the production plan at the beginning
of the year. The actual price households receive in a specific year is given using fields that have the
format orow_<year>, so e.g. orow_2012 contains the actual price for 2012. (The prices used by the
households for planning differ and depend on your choice of price expectation submodel, which will
be discussed in the next chapter.)

In our case, we spare ourselves the work of typing each year by using the \#foreach() function
referring to the user-defined variable YEARS. This leads us to an important feature: You can also use
MFL functions in field names, and whenever you use a function that results in a list, instead of one
field, a whole list of field is created. So if the list YEARS contains all years from 2010 to 2030, we
can create the fields orow_2010, orow_2011, orow_2012, . . . and thus supply the prices for all years
using just one line of code.

The list YEARS has to be defined in the [USER VARIABLES] section of the model data file. We can
use the step function to include all years of our simulation. E.g.

[USER VARIABLES]

YEARS = #steps(#var(STARTYEAR), #var(ENDYEAR), 1)

#table The ‘orow’ fields receive their values using a table function. We already introduced the table
function above, but we have not discussed table functions with more than one key. The table ‘prices’
could be declared in the model data file like this:

prices = (sql , 2) {" SELECT product , year , price FROM tbl_prices "}

And the corresponding table prices could contain the following lines:

product year price
wheat 2009 170
maize 2009 160
barley 2009 110
wheat 2010 150
maize 2010 170
barley 2010 100
wheat 2011 200
maize 2011 190
barley 2011 130
wheat 2012 130
maize 2012 180
barley 2012 90
. . .

As you can see, this table contains more than one line for each crop. So only by using the first
column we cannot uniquely identify a row in the table. On the other hand, we want to record only one
price for each crop in each year, and so the first two columns are enough to form our row key. In the
\#table function we thus also need two elements in the key array. For ‘orow’ , the first argument is
again the instance and the second argument is the start year minus one. In other words, we make
the very simple assumption that farmers expect to receive the same price in 2010 that they received
in 2009.

#this(field,1) For the other orows, we use the function #this with the arguments ‘field’ and 1. When-
ever you have used an MFL expression resulting in a list to define a field name, the #this(field) function
refers to the current index in the list. More specifically, #this(field,0) refers to the whole field name,

18

#this(field,1) to the result of the first function that resulted in an array, #this(field,2) to the second in
case you used more than one.

To understand this better, you can imagine mpmasql doing an intermediate step. From

orow_#foreach(YEARS) #= #table(prices , 3 , [#this(instance),

#this(field ,1)])

it first creates this

orow_2010 #= #table(prices , 3 , [#this(instance), 2010])

orow_2011 #= #table(prices , 3 , [#this(instance), 2011])

orow_2012 #= #table(prices , 3 , [#this(instance), 2012])

orow_2013 #= #table(prices , 3 , [#this(instance), 2013])

...

before calculating the field values.

#this(instance)_balance All fields of an activity that have no predefined meaning, are interpreted
as the coefficient of an activity in the corresponding constraint. As mentioned before, the full element
identifier is formed from the instance identifier, an underscore and the element identifier you used in
the element blueprint. So the crop balance constraints of our model will be called wheat_balance,
maize_balance and barley_balance. To say, that the selling activity of a crop should get a coefficient
of one in the balance constraint of the crop, we wrote:

#this(instance)_balance #= 1

#activityby Remember that we needed to create a production activity for every combination of soil
type and crop. The ‘-by’ suffix enables us to use MFL functions also in the definition of an element
identifier, and e.g. to create several similar activities for one instance of a class. However, you need
to first supply a fixed part (the ‘produce’ in our case) before you can add an MFL expression. The
activity names are then formed according to the following format:

<instance id >_<fixed_element_id >_<MFL >

In our example, we get the following activities:

wheat_production_on_soil_0

wheat_production_on_soil_1

wheat_production_on_soil_2

maize_production_on_soil_0

maize_production_on_soil_1

maize_production_on_soil_2

barley_production_on_soil_0

barley_production_on_soil_1

barley_production_on_soil_2

#this(by,1) Similar to fields, you can use #this(by, 1) to refer to the current index in the by expression.
So, the yield and soil balance fields

#this(instance)_balance #= -1 * #table(yields , 3, [#this(instance),

#this(by ,1)])

#this(by ,1) _soil #= 1

become

19

wheat_balance #= -1 * #table(yields , 3, ["wheat", 0])

0_soil #= 1

for activity wheat_production_on_soil_0 in the "intermediate" step.

What is now still missing is incorporating the yield and the variable costs tables into the model:

[USER TABLES]

yields = (sql ,2) { "SELECT crop , soil , yield FROM tbl_yields" }

variable_costs = (sql ,1) { "SELECT crop , variable_cost FROM

tbl_variable_cost "}

The corresponding two tables in the database could look like this:

crop soil yield
wheat 0 6
wheat 1 7.5
wheat 2 8
maize 0 8
maize 1 10
maize 2 9.5
barley 0 5.5
barley 1 6
barley 2 6.2

crop variable_cost
wheat 700
maize 950
barley 500

3.6.2 Liquidity needs

Apart from soil, we assigned three other resources to the agents: cash, labor and machinery. We still
need to connect these to the production opportunities of the household. Cash is used in MPMAS to
invest (Im) into new assets (which is discussed in the investments section below) and to reflect the
cash constraints a farm household may face during the season. Farms have to pay a lot of inputs
upfront for production activities (phcc) and receive their revenue only at the end of the season, so
either they have enough liquidity to pay all inputs or they have to take credit (stcrd) and pay interest.
If they have more cash than they need, they can put it on the bank to receive interest for short-term
deposits (stdep.)

Since you expect to be able to receive at least the amount of cash you paid for inputs as a revenue
at the end of the year, you can use the “same” money for investments and pre-financing of inputs.
(You can of course make different assumptions here, and change the model structure accordingly.)

We thus have two cash balance equations:

∑
c,j

phcc ∗Ac,j + stdep − stcrd ≤ ncash (3.6)

∑
m

eqm ∗ acqm ∗ Im + stdep ≤ ncash (3.7)

20

Farm households cannot take unlimited credit. One assumption may be, that they can use the
standing crop as a collateral and receive credit on the upfront input cost. The credit limit restriction
could be formulated and rearranged as follows:

stcrd ≤
∑
c,j

phcc ∗Ac,j (3.8)

⇔ stcrd −
∑
c,j

phcc ∗Ac,j ≤ 0 (3.9)

The liquidity-related model elements cannot really be associated to a class, and they occur only
once. Most of them are also special, because they are required by MPMAS. To implement this in
the model structure, we introduce a class MASSTANDARD, which contains all elements required by
MPMAS, which occur only once. We just assign one instance MAS to the class in the model data file:

MASSTANDARD = [MAS]

The class implementation would look like this:

#class MASSTANDARD {

#constraint liqendow {

name #= "Liquidity endowment"

unit #= Euro

type #= MASliq

}

#constraint year1liq {

name #= "Year 1 liquidity"

unit #= Euro

type #= MASly1

}

#constraint ongliq {

name #= "Pre -harvest liquidity"

unit #= Euro

type #= MASong

}

#constraint stcredit {

name #= "Short -term credit limit"

unit #= Euro

type #= MASscl

}

#activity stcreditact {

name #= "Short -term credit"

unit #= Euro

type #= MASscred

orow #= -1 * #var(INTEREST_SHCRD)

#this(instance)_ongliq #= -1

#this(instance)_stcredit #= 1

}

#activity stdeposit {

name #= "Short -term deposits"

type #= MASdep

unit #= Euro

orow #= #var(INTEREST_SHDEP)

#this(instance)_liqendow #= 1

}

21

#activity liqtrans {

type #= transfer

name #= "Transfer Liquidity"

unit #= Euro

#this(instance)_ongliq #= -1

#this(instance)_year1liq #= -1

#this(instance)_liqendow #= 1

}

}

MPMAS inserts the households cash reserves into the right hand side of the constraint of type MASliq.
There can only be one of these constraints, but we need the value on the right hand side of two
equations, that is why we use a transfer activity (liqtrans). Equation 3.6 is marked as MASong, equa-
tion 3.7 is marked as MASly1, and equation 3.9 as MASscl. The short-term credit and deposit ac-
tivities are marked as types MASscred and MASdep. The two variables INTEREST_SHCRD and
INTEREST_SHDEP are MPMAS parameters, we have to include into the model data file, e.g.
[MPMAS PARAMETERS]

INTEREST_SHCRD = 0.1

INTEREST_SHDEP = 0.02

Then we still need to specify the coefficients for the pre-harvest liquidity and short-term credit limit
equations to the definition of the production activities. We simply assume that 80% of variable cost
occur before the crop is harvested.
#class CROPS {

...

#activityby production_on_soil #foreach(SOILS) {

...

MAS_ongliq #= 0.8 * #table(variable_costs , 2 ,

[#this(instance)])

MAS_stcredit #= -0.8 * #table(variable_costs , 2 ,

[#this(instance)])

...

}

...

}

3.6.3 Labor use

Labor is mainly an issue in peak seasons, e.g. during harvest times. Household members can only
work a certain amount of time during the maybe 8 days, where wheat can be harvested or the 7 days
where barley can be harvested, respectively the 20 days were maize can be harvested. Assuming
these three harvest periods do not overlap and neglecting all other labor peaks, which there certainly
are, we need to incorporate three equations of the form:

∑
c,j

wdhc ∗Ac,j ≤ (nl −OL) ∗ hdc

365
+ TLc (3.10)

where wdhc stands for the number of days needed to harvest a hectare of crop c, nl is the yearly
capacity of labor of the household, which is calculated by MPMAS using the information in the POP-
ULATION_DYNAMICS table and the household member information, and hdc is the length of the
harvest period of crop c in days. The equation also takes into account that household members may
have off-farm employment OL and may hire temporary labor TLc to increase the amount of work that
can be done during harvest times.

22

Because of the multiplication on the right hand side, this equation is a bit more difficult to rearrange,
and we need the help of a transfer activity Θl and adding an additional equation to the system:

Θl + OL ≤ nl (3.11)∑
c,j

wdhc ∗Ac,j − TLc −Θl ∗
hdc

365
≤ 0 (3.12)

We did not distinguish different labor types, but to be general, we would have to repeat these equa-
tions for each different labor type. We thus put them into the class LABOR, to which we assign our
labor type (‘farm’) as an instance:
[INSTANCES]

LABOR = [farm]

The blueprint for the labor CLASS would look like this:
#class LABOR {

#constraint hhlabor {

name #= "Household labor of type: " ~#this(instance)

unit #= "person year"

type #= MASlab

labgrp #= #this(instance)

}

#constraintby labor_capacity #foreach(CROPS) {

name #= "Labor capacity of type " ~ #this(instance) ~" in

harvest season of " ~ #this(by ,1)

unit #= "person days"

}

#activityby templabin #foreach(CROPS) {

name #= "Hiring in temporary labor of type: " ~

#this(instance) ~" in harvest seasons of " ~ #this(by ,1)

unit #= "person days"

type #= MASlabtin

orow #= -1* #var(WAGE_PER_DAY)

#this(instance)_labor_capacity_#this(by ,1) #= -1

}

#activity hhlabout {

name #= "Hiring out household labor of type: " ~

#this(instance)

unit #= persons

type #= MASlabpout

orow #= #var(WAGE_HOUSEHOLD)

#this(instance)_hhlabor #= 1

}

#activity labor_transfer {

name #= "Transfer household labor of type:" ~#this(instance)

unit #= persons

#this(instance)_hhlabor #= 1

#this(instance)_labor_capacity_#foreach(CROPS) #= -1 *

#table(length_of_harvest_period , 2, [#this(field , 1)])

}

}

The household labor capacity calculated by MPMAS is entered on the right hand side of the equa-
tion, which is marked as MASlab and whose attribute labgrp is set to the corresponding labor type.

23

WAGE_PER_DAY and WAGE_HOUSEHOLD can be set in the [USER VARIABLES] section of the
model data file: E.g.

WAGE_PER_DAY = 120

WAGE_HOUSEHOLD = 28000

The harvest labor requirements of crop production can then be incorporated like this:

#class CROPS {

...

#activityby production_on_soil #foreach(SOILS) {

...

farm_labor_capacity_#this(instance) #= #table(harvest_labor , 2,

[#this(instance)])

...

}

...

}

The two tables harvest_labor and length_of_harvest_period would have to be added to the model,
which could look like this:

[USER TABLES]

harvest_labor = (sql ,1) {" SELECT crop , labor_req_harvest FROM

tbl_crops_labor "}

length_of_harvest_period = (sql ,1) { "SELECT crop ,

length_of_harvest_period FROM tbl_harvest_periods" }

crop labor_req_harvest
wheat .5
barley .6
maize .8

crop length_of_harvest_period
wheat 8
barley 7
maize 20

3.6.4 Machinery use

While labor, soil and liquidity are special assets, whose handling is controlled by MPMAS using the
special type marks, you have to define the relation between all other assets and the equation in the
decision problem in a more specific way.

For simplicity, let us assume our tractors have a certain capacity per year, e.g. with one plough you
can work 50 ha a year. (Of course, we could also be more specific and distinguish different peak
labor periods or different machinery sizes, et cetera.) The corresponding constraint equation for each
machinery type would then be:

∑
c,j

wc,m ∗Ac,j ≤ capm ∗ nm (3.13)

where wc,j is the number of times you need to work the field with a certain type of machinery for crop

24

c; nm is the number of equipments of type m the household owns, and capm is the yearly working
capacity of that machinery type.

As you need one constraint for each machinery type, we include it into the MACHINERY class and
we add the corresponding coefficients to the crop production activities.

#class MACHINERY {

#asset machinery_asset {

...

con #= #this(instance)_capacity

multiplier #= #table(machinery , 4, [#this(instance)])

}

#constraint capacity {

name #= #this(instance) ~" capacity"

}

}

#class CROPS {

...

#activityby production_on_soil #foreach(SOILS) {

...

table(work , 0, [#this(instance)])_capacity #= #table(work , 3,

[#this(instance), #this(field ,1)])

...

}

...

}

con The ‘con’ attribute of an assets links it to the constraint of its capacity, you simply have to assign
it the identifier of the corresponding capacity constraint.

multiplier The ‘multiplier’ specifies the capacity per asset, i.e. it would be 50 for our plough. It is
read from the fourth column of our machinery table, so we have to make sure our machinery table
also contains four columns. The updated table might look like this:

machinery lifetime acqcost capacity
tractor 10 10000 500
plough 6 1000 50
seeder 12 3000 50
harrow 8 760 100
cultivator 8 900 100

And we need to make sure, the additional column is also imported into our model:

machinery = (sql ,1) {" SELECT machinery , lifetime , acqcost , capacity

FROM tbl_machinery "}

#table(work, ...) The machinery requirements for the different crop production activities are read
from a table named ‘work’, which might look like this:

crop machinery frequency
wheat plough 1

25

maize plough 1
barley plough 1
wheat harrow 1
maize harrow 2
barley harrow 1
wheat seeder 1
maize seeder 1
barley seeder 1
maize cultivator 1

As you can see, the different crops have multiple and different field preparation requirements, so this
table needs two keys to uniquely identify rows. Also tractors are not mentioned, but we can conclude
that for every work you always need a tractor, so the tractor demand of a crop production activity is
the sum of all frequencies of the different works. We could add additional lines to the table, but then
we would always have to be sure to update it manually, whenever we update the table, because we
learned farmers in our study area rather use the harrow twice for wheat and not once. So, rather we
add the lines for tractor use with a UNION statement, while importing the table into mpmasql.

work = (sql , 2) { "SELECT crop , machinery , frequency

FROM tbl_work

UNION SELECT crop , 'tractor ', SUM(frequency)

FROM tbl_work

GROUP BY crop"

}

We already mentioned, that a #table function call with an empty key array as third argument returns
all different entries in the first column. This behavior is extended to incomplete key arrays, too. To
assign the capacity requirement to our production activities we used the following code:

table(work , 0, [#this(instance)])_capacity #= #table(work , 3,

[#this(instance), #this(field ,1)])

The field name definition contains a table function call that contains less keys that are actually needed
to uniquely identify one row. In this case the function returns a list of all different values of the sec-
ond column, where the first column matches they key provided. In other words, in the imaginary
intermediate step the expression would be expanded as follows for a the ‘wheat’ instance:

plough_capacity #= #table(work , 3, ["wheat", "plough "])

harrow_capacity #= #table(work , 3, ["wheat", "harrow "])

seeder_capacity #= #table(work , 3, ["wheat", "seeder "])

tractor_capacity #= #table(work , 3, [" wheat", "tractor "])

Whereas the expansion for ‘maize’ would look like this:

plough_capacity #= #table(work , 3, ["maize", "plough "])

harrow_capacity #= #table(work , 3, ["maize", "harrow "])

seeder_capacity #= #table(work , 3, ["maize", "seeder "])

cultivator_capacity #= #table(work , 3, ["maize", "cultivator "])

tractor_capacity #= #table(work , 3, [" maize", "tractor "])

3.6.5 Investments

Of course, it should also be possible for households to invest into new or additional machinery. In
MPMAS, investment and production decisions are separated into two steps. The production decision

26

is always taken for the coming cropping season, while an investment decision needs to take a longer
perspective into account, it is taken with an average year in the near future in mind. This becomes
especially important, when you have assets, whose characteristics change over time like perennial
crops. E.g. for perennial crops, the average yield to be expected over the next years may differ
considerably from this season’s, especially in the first year, when the expected yield is often still zero.

Investing into an asset is an activity in the LP decision problem. Both, investment and production
are based on the same decision matrix, except that in the investment decision the coefficients that
allow an investment are added to the investment activities. These are

• the coefficient in the capacity constraint of the investment,

• the objective row containing the annualized cost of the investment (debt service and linear de-
preciation on equity capital),

• the cash demand in the year of investment (the self-financed part of the purchase price)

• the average cash demand for the next years (the fixed equity)

• the expansion of the credit limit, because the self-financed part of the investment can be used
as a collateral for short-term credits (the fixed equity)

In the production decision these coefficients are zero, such that the activity is ignored by the house-
hold. In the model structure file these coefficients should be empty. The corresponding values are cal-
culated automatically byMPMASusing the long term interest rate parameters (INTEREST_LONGCRD,
INTEREST_SHDEP), and the ‘lifetime’, ‘acqcost’ and ‘multiplier’ fields of the asset.

In case youwant to test the investment decision problem in standalonemode (i.e. outside of MPMAS,
see chapter 5), you will want to have the coefficients that MPMAS calculates in the matrix. For this
purpose, mpmasql provides the function \#ifalone. The first argument to this function is the value
used when creating a standalone matrix, the second the one used when preparing MPMAS input files.
In this way, you can make sure, the coefficients automatically have the desired value, whenever you
switch between conversion modes, without having to update your files by hand.

In the following example, we have used the #ifalone function to show you the formulas MPMAS uses
internally to calculate the coefficients. The actual value found in the input file matrix is, however, zero
in any case.
#class MACHINERY {

#asset machinery_asset {

...

eqshare #= #var(EQSH)

act #= #this(instance)_invest

}

#activity invest {

name #= "invest into "~ #this(instance)

integ #= 1

ubound #= 10

orow #= -1 * #ifalone(#var(EQSH) * #table(machinery , 3,

[#this(instance)]) / #table(machinery , 2,

[#this(instance)]) + #annuity (#var(INTEREST_LGCRD), (1 -

#var(EQSH)) * #table(machinery , 3, [#this(instance)]),

#table(machinery , 2, [#this(instance)])) , 0)

#this(instance)_capacity #= -1 * #ifalone(#table(machinery ,

4, [#this(instance)]) , 0)

MAS_ongliq #= #ifalone(#fvalue (#var(INTEREST_SHDEP),

#table(machinery , 2, [#this(instance)])) * #var(EQSH) *

#table(machinery , 3, [#this(instance)]) , 0)

27

MAS_year1liq #= #ifalone (#var(EQSH) * #table(machinery ,

3, [#this(instance)]) , 0)

}

}

act The investment activity needs to be connected to an asset, so whenever the activity is chosen
by the household (i.e. greater than zero in the solution), MPMAS knows that it has to add this asset
to the household’s endowments and account for the upfront payment and debt service in the balance
sheet of the household. This is achieved by assigning the identifier of the activity to the field ‘act’ of the
asset. This field is a required field, i.e. you need to have an investment activity for every asset, even
if you do not want to allow investments into that asset, otherwise you will get an error. (You can set a
multiplier of zero, an unbound of zero, or use the innovation diffusion submodel to avoid investments
into the asset.)

integ All our machinery assets are indivisible, and thus we also need to make sure that their invest-
ment activity can only take integer values. This is achieved by setting the ‘integ’ attribute of an activity
to one.

ubound Usually, activities have an upper bound of 1031, i.e. they can take near infinite values, if the
constraints allow this. Integer activities should be constrained to some lower, realistically expectable
maximum value, in order to help the mixed integer solver find a solution. This can be done using the
‘ubound’ attribute. In our case, we expect it to be highly unrealistic that any household might want to
buy more than 10 pieces of the same machinery type at the same time.

#var(EQSH) In section 3.5.4, we had explicitly set the equity share of machinery investments to
25%. As we use the equity share in several of the calculations, it is a good idea to define a variable
for it and set the value once for all. It is good practice to use variables, whenever a value is used
in more than one place. This ensures consistency and saves you work, whenever you change a
parameter value later on.

We add this variable to the [USER VARIABLES] or the [GLOBALS] section of the model data file.

[GLOBALS]

EQSH = 0.25

3.6.6 Hiring machinery

Two of our example farms do not have a tractor and one does not have any machinery at all. Investing
into machinery is often not profitable, and households hire machinery when needed. To complete our
introductory model, we should also consider this in the model structure.

We simply add a hiring activity for each machinery type to our model:

#class MACHINERY {

...

#activity hire {

name #= "hire " ~#this(instance)

unit #= ha

orow #= -1 * #table(machinery , 5, [#this(instance)])

MAS_ongliq #= 1 * #table(machinery , 5, [#this(instance)])

28

#this(instance)_capacity #= -1

}

...

}

The price per hectare is simply added to the machinery table:

machinery lifetime acqcost capacity hiring_price
tractor 10 10000 500 50
plough 6 1000 50 15
seeder 12 3000 50 25
harrow 8 760 100 10
cultivator 8 900 100 12

machinery = (sql ,1) {" SELECT machinery , lifetime , acqcost ,

capacity , hiring_price FROM tbl_machinery "}

As this activity is not linked to any asset, it does not lead to a permanent increase in asset capacity,
but only extends the asset capacity for this season.

3.7 Running the model

3.7.1 Creating the MPMAS input files with mpmasql

After the model design has been created, the creation of MPMAS input files is started by running
mpmasql with the name of the conversion control file as an argument. Open a terminal, change into
the model directory, and type, e.g. for our example application.
mpmasql example.ini

mpmasql will then write the input files for our example into the subfolder input/dat/ and a commented
version of the files into xlsInput/. Further it will create a file called <prefix>run, i.e. in our case
examplerun, and place it into the model directory. This file is a shell script that you can run to start
the simulation. Since it is also merely a text file, you can open it in a text editor and have a look at it.
It should look like this:
#!/bin/sh

mpmas -Nexample__

The first line just instructs Linux that this is a shell script and the second line is the command that is
to be run in the shell, in our case, the MPMAS executable with the option -N, which tells MPMAS to
read the input files that start with example__. MPMAS automatically expects these to lie in a subfolder
called input/dat/.

If you want you can edit the file and e.g. append another MPMAS option to the program call, e.g.
-Y5, which tells MPMAS to stop the simulation after five years.
#!/bin/sh

mpmas -Nexample__ -Y5

You can also tell mpmasql to always append an option to the program call by including a FLAGS entry
into the conversion control file. Best placed under a heading [RUN SCRIPT].

29

[RUN SCRIPT]

FLAGS = -Y5

3.7.2 Running MPMAS

Especially the first time you try to run MPMAS on a computer, you’ll probably need to make sure
it is permitted to execute mpmas and the <prefix>run script (assuming you have installed the OSL
properly). If you get problemswith permissions, set the executable permissions, by typing the following
in a terminal in your model directory:

chmod a+x examplerun

No you can simply run the examplerun script,

./ examplerun

and MPMAS will start running and writing output to the out/ subfolder.

3.8 Scenarios

For each scenario you want to run, you have to create a separate set of MPMAS input files. This does
however not mean that you have to create new model configuration files for each scenario. mpmasql
offers an easy-to-use scenario mechanism, which allows to adapt any parameters or variables you
have used in your model design according to scenario settings you provide to mpmasql.

More specifically you can adapt every entry in the model configuration, any MPMAS parameter, all
global and user-defined variables, any instance list and the source string of every MPMAS and user-
defined table using the scenario mechanism. So basically you can change everything except the table
types and structure, even the model structure if you use your variables and lists wisely in the definition
of the model structure.

The basis of the scenario mechanism is a table, which is assigned to the [SCENDEF] field in the
conversion control file. It needs only three columns: ‘scenario’, ‘variable’, ‘value’. Column ordering
is significant, column naming is not. The first two fields serve as key, thus if the same combination
of scenario and variable appears several times only the last entry is used. Scenario names have to
follow the identifier naming rules [A-Z, a-z, 0-9, _]

mpmasql will automatically find out what kind of variable is referred to, so please – in general – do
not user parameter names if you define your own variables.

In the example (Tab. 3.15), the user-defined variable WAGE_PER_DAY would be set to 140 in Sce-
nario ‘scen1’ and to 80 in Scenario ‘scen2’. The MPMAS parameter SCONEXTRA would be set to 0.6
in Scenario ‘scen2’, while in Scenario ‘scen3’ the user-defined list LABPERIODS would be replaced
by the list retrieved from a database according to the specified SQL-Statement. Variables not listed
for a scenario simply remain the same as in the baseline.

Table 3.15: Sample SCENDEF table

scenario variable value
scen1 EQSH 0.2
scen2 EQSH 0.02
scen2 SCONEXTRA 0.6
scen3 LABPERIODS #sql(SELECT DISTINCT Class2 FROM labperiods)

30

The second step is to tell mpmasql, which scenarios to create by assigning a list of scenario identifiers
to the control file entry SCENLIST. If you include a scenario in this list, that does not have any entry in
the SCENDEF table, this will simply be equal to the original settings of your model configuration files.

E.g. assuming the sample SCENDEF table is stored in your database as ‘tbl_scenarios’, the com-
plete control file section could look like this:

[SCENARIOS]

SCENDEF = (sql) { "SELECT scenario , variable , value FROM scenarios "}

SCENLIST = (list) { [base , scen1 , scen2 , scen3] }

This would result in four scenarios, one equal to the baseline, the others with the changes as described
above. Of course, you can also include less scenarios than specified in your table:

[SCENARIOS]

SCENDEF = (sql) { "SELECT scenario , variable , value FROM scenarios "}

SCENLIST = (list) { [base , scen2] }

If you do not specify any scenarios or omit SCENLIST entirely your scenarioname is an underscore.
In general, the MPMAS input file names follow the following format:

<PREFIX ><scenarioname >_<predefined MPMAS file name >.dat

With four scenarios as above, your examplerun file, will now look like this:

#!/bin/sh

mpmas -Nexamplebase_

mpmas -Nexamplescen1_

mpmas -Nexamplescen2_

mpmas -Nexamplescen3_

So, if you now run examplerun, MPMAS will simulate one scenario after the other and always write
the output files to out/.

3.9 Output analysis

MPMAS writes the simulation results into plain text files, which are similar as the input files and hard
to read, because they contain no commentary and easily grow very large, especially if your deci-
sion model is large. To work and analyze the results, it will usually be necessary to import the re-
sults into a statistical software package. mpmasql automatically generates import scripts for the two
statistical software packages stata and R. The R script can also be used to transform the data into
more conveniently formatted, tab-separated text files, which can then be imported into your database,
spreadsheet software or any statistical software package of your choice.

3.9.1 Defining output variables

The MPMAS output contains for each agent and simulation period, among others, the updated solu-
tion and the right- and left hand side capacities of the last decision model solved, i.e. the production
plan, as well as a number of performance indicators (e.g. income, cash flow, equity).

Especially, in large decision models, many variables (e.g. transfer activities) will not really be of
interest to you. Further, often the variable of interest is split over several activities, e.g. to get the
total area grown with a certain crop, you may have to sum over all the different activities representing
the different combinations of terrain types and management options associated to that crop. The

31

importing scripts can automatically do that for you, if you indicate to which aggregate variable an
activity belongs.

This is done using user-defined fields, which are marked with #resultgroup>. E.g. in our exam-
ple, the following would give you three result variables for each agent: crop_wheat, crop_maize and
crop_barley, each containing the total area grown with the respective crop, summed over all soil types:
#activityby production_on_soil #foreach(SOILS) {

...

#resultgroup > crop #= #this(instance)

...

}

You could additionally create a variable for each soil type, giving you the total area of crops grown
on each soil type, e.g.
#activityby production_on_soil #foreach(SOILS) {

...

#resultgroup > crop #= #this(instance)

#resultgroup > cultivated_area_of_soil #= #this(by , 0)

...

}

The abovewill create the three crop variables as above, as well as the three variables cultivated_area_of_soil_0,
cultivated_area_of_soil_1, and cultivated_area_of_soil_2. Of course, you can also create variables
from capacities by adding #resultgroup> fields to constraints.

3.9.2 Importing results into stata

Whenever you create a new input file set for MPMAS, mpmasqlwill also create an import script for stata.
It is named <prefix>_import_to_stata.do and placed into the same folder as the <prefix>_run

script.

If you use the standard folder setup you can just open stata, change to the MPMAS root directory
and run the script there. You will then find one stata file per scenario in the subfolder Stata/combined/,
containing performance data, RHS, LHS, solution and all user-defined variables for each agent and
period.

If you use a different folder setup or want the files to be written into different places, you can change
the first part of the script accordingly or let mpmasql directly create the script according to your needs,
by setting the corresponding entries in the [STATA SCRIPT] section of your control file (see B.1).

3.9.3 Importing results into R

Like for stata, whenever you create a new input file set for MPMAS, mpmasql will also create an import
script for R. It is named <prefix>_import.R and placed into the same folder as the <prefix>_run

script.

You can run it by typing R --vanilla < <prefix>_import.R at the terminal, after changing into the
root directory of your MPMAS version. 3 By default, the data is stored in the file <prefix>.Rdata,
located in the subdirectory R/data/workspaces/. You can open it in R using the load function, after
that, your workspace will at least contain two data frames per scenario, one containing the combined
performance information, RHS and solution for each agent and period (_combined) and one contain-
ing the combined sets of user variables (_userset). Further, there will one data frame for each set of
user-defined variables and scenario.

3The --vanilla just tells R not to neither restore nor save any data into the workspace of the current directory.

32

You can fine tune the behavior of the script by adapting it manually yourself, or let mpmasql do that
for you according to the entries of the [R SCRIPT] section of the conversion control file (see B.1).

3.9.4 Transforming results into text files/databases

If you do not want to use neither R nor stata to analyze your data, you may still prefer to transform the
raw MPMAS output to more conveniently formatted text files, including your user-defined variables. If
you set the R_TO_TAB entry in the control file to 1, you mpmasql will create an R import script that saves
the same setup you would find in your R workspace as tab-separated text files in the subdirectory
R/data/tab/. You run it the same way as described above. By default, the .RData output is also
created, but you can omit this by setting the control file entry R_TO_WORKSPACE to zero.

33

Chapter 4

Model design with mpmasql: MPMAS
submodels and features

The model setup described in the previous section is a relatively simple one, it does not contain agent-
agent interactions, no real interactions with the environment and only very simple kinds of assets.
MPMAS contains complex features for all of these, and in this section the ones implemented with
mpmasql are presented.

4.1 Perennial crops

Perennial crops are crops, which once planted occupy land for a certain lifespan longer than a year.
Yields, production costs and input requirements may change with age. Planting them is an investment
decision.

Within MPMAS, perennial crops are represented by several model elements: As perennial crops
are investments, there has to be an asset, an investment activity and an endowment constraint. As
they are production processes, there is a growing activity and because the same perennial plant can
be managed in different ways there are switching activities between different management practices.
Further, as yields and input requirements changewith age there is a perennial file entry, which supplies
the respective values for each age.

Every perennial is equal in this respect and thus perennials of course in principle form a decision
class. However, mpmasql saves you the work of specifying each model element individually by pro-
viding a special type of element: the perennial.

You can activate the perennial crops model by setting the PERMCROP_MODEL entry under [SUB-
MODELS] in the configuration to 1.

Perennial elements are specified in the .model structure file, in a similar way as definitions for basic
model elements (activities, constraints, assets). As usual there is also a perennialby-element.

Let’s look at an example:

#class PERENNIALS {

#perennialby trees #foreach(SOILS) {

'shared fields

name #= #table(perennials , 0, [#this(instance)]) ~ " on soil

#this(by ,0)"

34

lifetime #= #table(perennials , 4, [#this(instance)])

acqcost #= #table(perennials , 5, [#this(instance)])

terrain #= #table(perennials , 7, [#this(instance)])

$$managementswitch #= #table(perennial_switching ,

2,[#this(instance)])~" _trees"

'specific fields

#asset >perm #= #table(perennials , 3,

[#this(instance)]) _balance

#asset >innogrp #= default

#asset >landreq #= 1

#dynamic > perennial_yield #= #table(perennial_yields , 3,

[#this(instance), #this(dyn)])

#dynamic > perennial_preharvest_cost #= 0

#dynamic > perennial_harvest_cost #= 0

#dynamic > farm_labor_capacity_#foreach(CROPS) #=

#table(perennial_labour , 4, [#this(instance), #this(dyn),

#this(field ,0)])

#investment > #this(by ,0)~" _soil" #= 1

#investment > #this(by ,0)~" _invsoil" #= 1

#production > #this(by ,0)~" _soil" #= 1

}

}

There are so-called shared fields, which are used by several of the created model elements, and
there are specific fields, which are used by only one of the elements. Shared fields are name,

lifetime, acqcost, terrain and \$\$managementswitch and except for the later these are already
known from the basic model elements. Specific fields are marked with a # > surrounding the subele-
ment they belong to.

The subelement asset contains all fields for the network object. (Including perm, which refers to the
yield balance constraint of the crop). The act and con fields are filled automatically by mpmasql and
should not be given.

Subelements production and investment refer to fields and coefficients of the growing and invest-
ment activity that do not change with age.

Those coefficients that do change with age are included in the subelement #dynamic>. Three fields
are obligatory: perennial_yield, perennial_preharvest_cost and perennial_harvest_cost.

perennial_yield should contain the relative yield at a certain age, as a share of the maximum yield
that can be obtained in the best producing age.

Every other field is interpreted as a coefficient for a constraint. Value definitions for these fields can
either result in a scalar, then they will be constant over all ages for this specific instance, or they can
be a function that contain the placeholder \#this(dyn) for the age, and result in different values for
different values of \#this(dyn).

Note that you do not have to specify a value for each age. Missing values will be filled automatically
by taking the value of the next higher age for which a value has been supplied. So for example, if
your perennial crop produces a proportional yield of 0 in the first five years, 0.5 in the next five years
and 1 over the rest of its 25 years of use life, it would be enough if the table perennial_yields in the
above example would contain three entries for this instance (5; 0), (10; 0.5) and (25; 1). A value for
the highest age has to be supplied, however.

During simulation MPMAS will look into the dynamic element to select the value for the current age
of the perennial plantation and enter it into the matrix. (Actually, it does an area-weighted average
over all currently present age levels.)

35

Once grown, the management applied to a perennial crop may sometimes be changed during the
course of its life. For each type of management, a separate perennial object has to be introduced
into the model, because age-specific yield or input requirements usually differ. However the agent
later does not have to cut down his plants and replant new ones to switch management practice (e.g.
change irrigation practice or fertilizer use), but he can just use one perennial object as if it was the
other. This is called switching in MPMAS. Switching should of course only be possible where it makes
sense, e.g. from furrow- to drip-irrigated apple, but not from apple to pear trees. So for each perennial
object you can supply a list of those perennial objects from which you can switch to the present one.
This list should be given as a value to the $$managementswitch field (The $$ indicate it is an array
field). For each entry in the list an activity is implemented automatically, which has the coefficients of
the new management practice, except for the endowment constraint where the coefficient is placed
in the endowment row of the original management practice.

Perennial objects need a future yield constraint and a future selling constraint. Future selling activities
should be of type "MASfuture" and are otherwise similar to selling activities. Future yield constraints
have to be placed directly after the current yield balance row. To achieve this they have to be of the
same type as the yield balance row and should have an identifier that is automatically sorted directly
behind the yield row (remember that matrix elements are sorted by type and then alphabetically by
identifier).
#class PERENNIALS {

#activity sell_future {

name #= "Future selling of "~# this(instance)

type #= MASfuture

orow #= #table(prices , 3, [#this(instance),

#var(STARTYEAR)])

orow_#foreach(YEARS) #= #table(prices , 3, [#this(instance),

#this(field , 1)])

#this(instance)~" balance_future" #= 1

}

#constraint balance_future {

name #= "Future balance of "~# this(instance)

type #= product_balance

unit #= kg

}

#constraint balance {

name #= "Balance of " ~ #this(instance)

type #= product_balance

unit #= kg

}

#activity sell {

name #= "Sell "~ #table(perennials , 2, [#this(instance)])

type #= MASsell

orow #= #table(prices , 3, [#this(instance),

#var(STARTYEAR)])

orow_#foreach(YEARS) #= #table(prices , 3, [#this(instance),

#this(field , 1)])

#this(instance)_balance #= 1

}

}

Perennials block plots. These plots cannot be used for other crops, and especially you cannot plant
other perennial crops on them. Tomake sure this does not happen, a special constraint of typeMASinv
has to be added to the MILP for each soil. MPMAS will enter the soil that has not been blocked by
perennials on the RHS of these constraints during the investment stage. Each perennial investment
activity should have a coefficient of 1 in the respective constraint.
#class SOILS {

36

#constraint invsoil {

name #= "Investments on terrain " ~ #this(instance)

unit #= ha

type #= MASinv

}

}

Often perennial crops have a long gestation period, in the first years, during which they do not yet
give full yield, they produce a negative cash flow. To make sure the agent does not go bankrupt,
because the cash demand of the newly planted perennials plus the foregone revenue from the crops
he had previously grown on the soil surpass his liquidity, a further constraint is added. MPMAS will
place the cash surplus of the previous year to the rhs as a basis for the estimate of future cash flows.
During simulation MPMAS will set the coefficient of the investment activity in this constraint to the
highest cash demand for a year in the gestation period and add a certain amount on top accounting
for the loss in positive cash flow from the previous use of the plot. In effect, this constraint restricts
investment such that the sum of the highest cash demand during the gestation period of all perennials
planted during this season is lower than last year’s cash surplus minus the foregone cash flow of the
crops that cannot be produced anymore (λs). The later is not calculated endogenously, but given
exogenously as a kind of shadow cash surplus for each soil type.

#class MASSTANDARD {

#constraint invcash {

name #= "Future expected cash surplus"

type #= MAScas

}

}

Besides this, another option is to restrict investment into perennial crops to only a share of the
currently free plots. The free plots are then divided by a physical investment bound. Both, physical
investment bounds and shadow cash surplus can be specified for each soil type in the SEGBOUNDS
table given in the [MPMAS TABLES] section of the data file (see Tab. B.26 in section B.3). The default
values are 1 for the physical investment limit and 0 for the opportunity cost.

4.2 Livestock

The livestock model is a pretty detailed, individual based representation of livestock production includ-
ing simulation of offspring and aging, and use of livestock as a liquidity reserve, which is especially
useful to represent small-holder decision making in developing countries. For other cases, you would
probably prefer an aggregate, herd-based representation, which you should be able to implement with
the basic MPMAS assets.

The livestock is activated by setting the LIVESTOCK_MODEL entry under [SUBMODELS] in the
model configuration to 1.

The implementation in mpmasql is similar to perennial objects. There is a compound livestock ele-
ment (#livestock, resp. #livestockby) which is automatically transformed into a number of model
elements (an investment activity, a maintenance activity, a sell-at-start-of-period and a sell-at-end-of-
period activity for each age, an overall endowment constraint and one for each age, a disinvestment
(sell-all) constraint and a livestockfile entry). All of these activities are doubled, because each is gen-
erated once for each sex of the livestock type. You can differentiate field and value definitions by sex
using the special variable #this(sex) (e.g. females should produce offspring, while males should
not.)

Like perennials, livestock elements contain shared fields, which are used by several of the sub-
elements, and there are specific fields, which are used by only one of the generated elements. Shared

37

fields are name, lifetime, acqcost, unit, purchase_age, salesactivity_meat. The first five should be
self-explaining, salesactivity_meat should refer to the identifier of the selling activity of the meat of the
animal.

Specific fields are again marked with a # > surrounding the subelement they belong to. The subele-
ment #asset> contains all fields for the asset (Fields act, con, and div are set automatically) . Subele-
ments #maintain> and #investment> refer to fields and coefficients of the growing and investment
activity that do not change with age. Subelements #salesstart> and #salesend> refer to the sell-
at-start-of-period and sell-at-end-of-period activities. As all of these are integer activities it is recom-
mendable to set at least a reasonable upper bound for them. Subelement #disinvest> refers to the
disinvestment (sell-all) constraint.

The dynamic part of the livestock element is split up into several field group (dyn_liveweight,
dyn_offspring, dyn_sales, dyn_internal, dyn_liquidity, dyn_land, dyn_labor). Value def-
initions for these fields can either result in a scalar, then they will be constant over all ages for this
specific instance, or they can be a function that contains #this(dyn) as a variable referring to a
specific age.

dyn_liveweight should contain one field, whose field definition should contain the identifier of the
balance constraint for the meat of the animal and whose value definition should provide the
liveweight of the animal at each age.

dyn_offspring should contain one field, whose field definition should contain the identifier of the bal-
ance constraint of the offspring and the value definition should result in the number of offspring
produced by an individual of this livestock type, sex and age.

dyn_sales should contain one field per marketable product (e.g. milk, wool) that is produced by an
individual of the respective livestock type, sex and age. The field definition should contain the
identifier of the balance constraint of the product and the value the amount produced.

dyn_internal should contain one field per internal consumable used or produced (e.g. manure,
feed) that is produced by an individual of the respective livestock type, sex and age. The field
definition should contain the identifier of the balance constraint of the consumable and the value
the amount produced (positive value) or consumed (negative value).

dyn_liquidityshould contain one field, whose field definition should contain the identifier of a liq-
uidity constraint (usually MAS_ongliq) and whose value definition should indicate the required
liquidity.

dyn_land may contain as many fields as you have soil types in your model though usually less. The
field definition should contain the identifier of a (soil) constraint and the value definition should
indicate the required amount.

dyn_labor may contain one field, whose field definition should contain the identifier of a labor con-
straint and the value definition should indicate the required amount of labour. (If you need more
labor constraints put them as internal consumables).

4.3 Crop growth models

One of the special features of MPMAS is its ability to be coupled with crop-growth models. So far, we
have assumed that plant growth occurs as planned, but in reality crop yields are often depending on
natural conditions.

38

4.3.1 CropWat

CropWat is an internal MPMAS implementation of the FAO56 model for crop growth under water
deficit. To simulate irrigation, it has to be combined with the EDIC hydrology model, however, if
only rainfed crops are modeled, the EDIC model is not necessary. It is activated by setting the
CROP_MODEL entry under [SUBMODELS] in the model configuration to 2.
[SUBMODELS]

CROP_MODEL = 2

In the MPMAS TABLES section of the model data file, time series for precipitation and potential
evapotranspiration have to be provided for each sector as well as values for the initial expectations
for both (Required table columns are given in Tab. B.8, Section B.3). Optionally, you can adapt the
formula used to calculate effective rainfall, i.e. the amount of rain that can be used by the plant, from
observed rainfall. The default is the USDA formulation, alternatively you can specify the coefficients
of a quadratic equation that includes precipitation, the crop water demand and their interaction as
independent variables.

The evapotranspiration values are reference values, which are transformed into plant-specific evap-
otranspiration by multiplying them with the respective plant-specific coefficient for the corresponding
months (kc). These kc are entered for each cropping activity in the model structure file, together with
other essential values needed for the CropWat model. For this purpose, a new field marker #cropwat>
is introduced that can be placed inside activities and perennial objects. Under this marker, the fields
listed in Tab. 4.1 should be specified.

Table 4.1: Required fields with the #cropwat> marker
Field Description Values
#cropwat>irrigation_method irrig_id as specified in EDICIRRIG-

METHODS, or -1 for rainfed
integer

#cropwat>k_y yield sensitivity to water deficit number
#cropwat>ipg irrigation priority group (-1: unirrigated,

0 highest priority)
integer

#cropwat>seasonality seasonality (2: annual) integer (0..2)
#cropwat>yield_potential potential yield without deficit number
#cropwat>yield_start agent yield expectation in first year number
#cropwat>kc_#foreach(MONTHS) kc value of crop for each months of the

irrigation season
number

#cropwat>yield_constraint identifier of the yield constraint of the
crop

identifier

#cropwat>sales_activity identifier of the sales activity of the
product

identifier

#cropwat>soil soil type integer
#cropwat>zerolab whether the activity is a zero labour ac-

tivity (needed for spatial allocation)
0-1

Further, you need to define one water balance constraint for each irrigation month of type MASwater,
which is best placed in the class MASSTANDARD. E.g.:
#class MASSTANDARD {

...

#constraintby watersupply #foreach(MONTHS) {

type #= MASwater

name #= "Water availability in month #this(by ,0)"

unit #= "m^3/s"

}

...

39

}

4.3.2 External crop growth models

MPMAS provides an interface to communicate with external crop growth models using the TDT-library.
MPMAS sends a map with a numeric ID of a cropping activity in each cultivated cell (or -1 for an
uncultivated cell), and expects the crop model to return a map with the corresponding yield in each
cell.

The external crop growth model interface is activated by setting, both, the CROP_MODEL as well
as the LANDSCAPE_MODEL entry in the model configuration to 3.

[SUBMODELS]

CROP_MODEL = 3

Each cropping activity, whose yield is to be calculated using the crop growth model, needs to include
additional fields, which are marked with #external_crop_growth>.

#class CROPS {

#activityby production_on_soil #foreach(SOILS) {

#external_crop_growth >link #= #table(xcwlink ,3, [

#this(instance), #this(by ,0)])

#external_crop_growth >soil #= #this(by ,0)

#external_crop_growth >crop_type #= 1

#external_crop_growth >priority #= 1

#external_crop_growth >product1_sales_activity #=

#this(instance)_sell

#external_crop_growth >product1_balance #=

#this(instance)_balance

#external_crop_growth >product2_balance #= -1

#external_crop_growth >initial_yield_product1 #= #table(yields ,

3, [#this(instance), #this(by ,1)])

#external_crop_growth >initial_yield_product2 #= 0

}

}

link is the ID to be put into themap for the activity. The crop growthmodel, or a wrapper, is supposed
to understand the ID and transform it into input for the plant model.

product1_sales_activity The identifier of the sales activity of the product (only necessary if you
do not use an explicit harvest/consumption decision, see Sec.4.3.4).

product1_balance The identifier of the balance constraint of the first product.

product2_balance The identifier of the balance constraint of the second product (only possible if
you use an explicit harvest/consumption decision).

initial_yield_product1 The expected yield of the first product for the first simulation period

initial_yield_product2 The expected yield of the second product for the first simulation period

priority is an integer indicating, how close the area should be placed to the farmstead of the agent,
the smaller the number the closer

crop_type indicates whether the activity is seasonal (0), annual (1) or perennial cop (2), or whether
it is a fallow activity(3) or deactivated (-1).

40

At least one activity per soil type should be marked as fallow activity and this activity should not
require any limited resources (e.g. labor). This is important, because in order to create a map of
cropping activities, MPMAS has to round the crop areas to full integers in order to distribute them over
the map cells. To avoid any conflicts with resource constraints, MPMAS will only round towards zero,
and allocate the remaining area to a fallow activity, which should not require any resources.
#class FALLOW {

#activityby on_soil #foreach(SOILS) {

#external_crop_growth >link #= #table(xcwlink ,3, [

#this(instance), #this(by ,0)])

#external_crop_growth >soil #= #this(by ,0)

#external_crop_growth >crop_type #= 3

#external_crop_growth >priority #= 1

}

}

4.3.3 Exogenous yield time series

Instead of an external crop growth model, you can also provide a time series of yields for every period
and cropping activity. The external crop growth interface looks the same as in the previous section,
you only have to add a value for each product and simulation period as shown below.
#class CROPS {

#activityby production_on_soil #foreach(SOILS) {

...

#external_crop_growth >yield_product1_#foreach(YEARS) #=

#table(yield_time_series , 4, [#this(instance), #this(by ,1),

#this(field ,1)])

#external_crop_growth >yield_product2_#foreach(YEARS) #= 0

...

}

}

You then have to run MPMAS with the flag -T16, to make it read the yields from the input files instead
of waiting for input from the crop growth model. You can have mpmasql do that for you by including
-T16 into the FLAGS list in the control file.
FLAGS = -T16 ...

4.3.4 Adaptation of production decisions after harvest

Whenever a crop growth model is used, the harvested yields and as a consequence the income
obtained by the agent will most probably differ from the agents original plan. As long as the farm
household only sells the crops obtained, MPMAS will simply correct the farm household’s revenue
using the yield obtained and the price information of the associated selling activity.

This simple approach only works as long as the farm household does not consume the produced
crop itself or uses it as an input for another production process, e.g. as fodder for animals or feed-
stock for a biogas plant. In this case, the original production plan will have to be revised, once the
production result is known, e.g. in order to buy additional food or feed from the market. If you are
using the advanced consumption model, this is part of the consumption decision, in other cases you
have to explicitly request a revised harvest decision by setting the corresponding entry in the model
configuration to 1.
HARVEST_DECISION = 1

41

At the end of the season the farm household can of course not undo his planting decisions and
therefore all cropping activities and all other activities that have to be considered irreversible at the
end of the season have to be fixed at the values determined in pre-season decision (except the fallow
activities in order to allow for rounding). This is achieved by setting the special field ‘consfix’ to 1 for
all activities that shall be fixed.

#class CROPS {

#activityby production_on_soil #foreach(SOILS) {

consfix #= 1

}

}

4.3.5 Yield expectations for crops not grown

As the crop yield is unknown to the farm households at the time of planning, they have to take their
decisions based on expectations. The yield expectation for the first year is given as a field in the crop
growth model interface, and in the following years are updated according to the rules for expectation
formation as described in section ??. However, while it is rather easy for a farm household to observe
all market prices, also for products it did not buy or sell, it is less easy to observe crop yields for crops
it did not grow, respectively for combinations of crops, soil types and management options it did not
use.

Yield expectations for cropping activities a farm household did not practice can be formed by analogy
to crops that have been observed. E.g. if a farm household observes a constant decline of yields
of wheat fertilized with pig manure, it might assume that the same decline would also be observed
if it used cow manure instead. In order to facilitate such comparisons, you can specify similarity
relationships between cropping activities. Similarities can be specified at different priority levels. This
is done using the special field marker #yield_expectation> with fields named similarity_<level>.

#class CROPS {

#activityby production_on_soil #foreach(SOILS) {

#yield_expectation > similarity_1 #= #this(instance)

#yield_expectation > similarity_2 #= #this(by ,0)

}

}

In the example above, we defined two similarity levels. At level one, all cropping activities of the same
crop are considered similar, and at level two, all cropping activities on the same soil. Whenever new
expectations have to be formed, let say for wheat production on soil type 0, and the farm household
did not practice this activity, it will first look for all other wheat activities it realized. If it did not grow
wheat at all, it will check all other cropping activities on soil type 0. If it did practice activities that can
be considered similar, it will check whether obtained yields differed from its expectation and update its
yield expectation for wheat production on soil type 0, in the same way it updated the yield expectations
for similar cropping activities on average.

4.4 Consumption

In reality, farm households cannot put all of their money onto the bank or reinvest it, but they will
need a certain amount of money for consumption purposes. In MPMAS, the modeler has the choice
between a basic and an advanced three-stage consumption model. By default the basic consumption
model is used.

42

4.4.1 Basic consumption model

The basic consumption model is a simple, Keynesian-style, parametric consumption model. Cash
consumption is calculated using the formula

SCONMIN ∗ nhhm + SCONEXTRA ∗ (πncs − SCONMIN ∗ nhhm) , (4.1)

where nhhm is the number of household members and πncs is the net cash surplus of the year.
Cash consumption thus consists of a minimum consumption needed to maintain the family and an
extra consumption that depends on the performance of the household enterprise. If cash reserves
of the household are not enough to cover even the minimum consumption, the full cash reserves are
consumed. You can however specify a minimum threshold as a share of the minimum consumption
(SCONRED) that is the absolutely essential part of the consumption, and if this cannot be satisfied
the household will exit.

The parameters of the basic consumption model are specified in the [MPMAS PARAMETERS] sec-
tion of the data file. For example:
[MPMAS PARAMETERS]

SCONEXTRA = 0.25

SCONMIN = 10000

SCONRED = 0.2

4.4.2 Advanced three-stage consumption model

The extended three-stage consumption model has been developed to model subsistence farming.
It is a parametric model, whose parameters can be estimated econometrically, and which partitions
the household income into savings, expenditure for non-food goods and expenditure for different food
categories. Food demand is expressed in demand for nutrients and depends on the household size.
Food demand can be covered by consuming self-produced goods or by buying food from the market.
The model is quite complex and is not going to be explained in full detail here, the full rationale and
equations of the model can be found in Schreinemachers [2006]. Here we only describe, how the
parameters and elements of the model have to be implemented in mpmasql.

Model configuration

Set the CONSTYPE entry in the configuration file to 1.

The three-stage consumption model respects the nutrition requirements of household members.
The configuration entry HHNUTRIENTS provides a list of identifiers of these nutrients and your HOUSE-
HOLD_DYNAMICS table should contain columns at the end indicating the nutrient requirements for
each sex and age of a kind of population member. At least one nutrient has to be included.

Example:
[CONSUMPTION]

CONSTYPE = 1

HHNUTRIENTS = [energy , protein]

MPMAS PARAMETERS

Table 4.2 lists the parameter names used to enter the estimated coefficients and thewidths of lineariza-
tion segments for the savings, food-nonfood expenditure and food category expenditure functions. All

43

are required and none has a default value, and all should be included in the MPMAS parameters sec-
tion.

Table 4.2: Parameters of the
Field Description
XC_SAV_INCSEGS List with the widths of the income segments

(except first) of the savings function
XC_SAV_COEF_INC Estimated coefficient of income in the savings

function
XC_SAV_COEF_INC2 Estimated coefficient of squared income in the

savings function
XC_SAV_COEF_HH Estimated coefficient of household in the sav-

ings function
XC_SAV_COEF_CONST Estimated constant in the savings function
XC_FNF_COEF_CONST Estimated constant in the food-non-food ex-

penditure (share) function
XC_FNF_COEF_EXP Estimated coefficient of total expenditure in

the food/non-food expenditure (share) func-
tion

XC_FNF_COEF_HH Estimated coefficient of total expenditure in
the food/non-food expenditure (share) func-
tion

XC_FNF_EXPSEGS List with the widths of the total expenditure
segments in the food/non-food expenditure
(share) function

XC_FOO_FEXSEGS List with the widths of the food expendi-
ture segments in the food category expendi-
ture(share) function

Example:

'Savings function coefficients

XC_SAV_COEF_INC = 0.3197431

XC_SAV_COEF_INC2 = 9.09E-006

XC_SAV_COEF_HH = -89.21698

XC_SAV_COEF_CONST = -5975.1

'Income segementation into five segements

XC_SAV_INCSEGS = [800, 2100, 3700, 7000, 34000]

'FOOD/NON FOOD

XC_FNF_COEF_CONST = -56.76446

XC_FNF_COEF_EXP = 0.8757261

XC_FNF_COEF_HH = -0.6778122

' Segmentation of food non food expenditure

XC_FNF_EXPSEGS = [4500, 6800, 9800, 15000 , 53000]

XC_FOO_FEXSEGS = [3814, 5775, 8259, 12044, 42860]

Model structure

It is best to simply copy the class MASCONSUMPTION provided in the appendix, Sec. B.4.3. This
class contains most of the necessary elements, which you can automatically adapt to your implemen-

44

tation using the settings you provide in the data file. You also need a different MASSTANDARD class,
which can be found in Section B.4.3.

Apart from the elements in this class you should add a self-consumption activity for all of those
products which can be self-consumed for covering household food needs. These activities should
be of type MASfoodconsume have a field #consumption> category, which links it to one of the food
categories in the MASCONSUMPTION class. For example:

#class CROPS {

#activity consume_own {

name #= "Consume own " ~ #this(instance)

type #= MASfoodconsume

...

#this(instance)_balance #= 1

...

CONS_hhnutrient_supplyc_#foreach(HHNUTRIENTS) #=

#table(products_nutrients , 3, [#this(instance),

#this(field , 1)])

...

#consumption > category #= #table(products_food_categories , 2,

[#this(instance)])

}

}

When using the consumption model, the decision problem is solved three times: once for invest-
ments, once for the production decision at the beginning of the season, and once for the harvest
and consumption decision at the end of the season. The pre- and post-season MILPs look similar,
only actual prices and actual yields are inserted instead of expectations. Further, certain parts of the
solution cannot be changed anymore at the end of the season, e.g. especially the crop production
activities (except fallow) should be fixed at their original values. To indicate, which activities should
be fixed in the consumption stage, you need to add a consfix attribute to the corresponding activities
and set it to one. MPMAS will then set the lower and upper bound of these activities to the solution
of the pre-season solution. (Note: Those activities marked as no-labor activities in the crop growth
section, should not be fixed, otherwise the MILP might become infeasible.)

Any other change of coefficients between production and consumption stage can be indicated using
the #harvest> subelement. E.g. if you used security equivalents to calibrate your model these should
be set to one for the consumption stage as shown below.

#class CROPS {

...

#activityby production_on_soil #foreach(SOILS) {

...

consfix = 1

...

}

#activity sell {

#this(instance)_balance #= 1.2

#harvest >#this(instance)_balance #= 1

}

}

45

Data file

To make the MASCONSUMPTION class work you should include the following entry in the [USER
VARIABLES] section of your data file. It just sets the name of the monetary unit used in the definition
of MASCONSUMPTION. Under [INSTANCES] you should include one instance CONS for the class
MASCONSUMPTION.

[USER VARIABLES]

CURRENCY = <currency name >

UP_CREDIT_DEFAULT = <utility penalty for defaulting on credits >

MAX_DEFAULT = <maximum credit that can be defaulted >

[INSTANCES]

MASCONSUMPTION = CONS

Most work will however go into providing data for the tables used in MASCONSUMPTION in the
[USER TABLES] section. These tables are described in Tab. 4.3. You can, of course, adapt naming
of tables and columns to the structure of your database. Unless you want to adapt the MASCON-
SUMPTION class itself (you are of course free to do so if you dare), you should however provide
columns with the indicated content in the given order.

46

Table 4.3: TABLES for MASCONSUMPTION
Column Description

foodcats
food category id Id for the food category
name of of food category Name of the food category
unit of food category Unit of the food category
xc_foo_const Constant term in the LA/AIDS expendi-

ture function for this food category
xc_foo_coeff_expsi Coefficient of expenditure/price index in

the LA/AIDS expenditure function for
this food category

xc_foo_coeff_hh Coefficient of household size in the
LA/AIDS expenditure function for this
food category

budget_share observed budget share of the food cat-
egory
crossprice

food category 1 id id of first food category
food category 2 id id of second food category
coefficient Coefficient of price of second category

in the LA/AIDS expenditure function for
this food category

products_food_categories
product id id of product
food category id id of food category the product belongs

to
food_category_prices

food category id Id for the food category
year model year
price price in given model year

food_category_nutrients
food_category_id id of food category
hh_nutrient id of nutrient
quantity nutrient content

products_nutrients
product_id id of food category
hh_nutrient id of nutrient
quantity nutrient content

utility_penalty
hh_nutrient id of nutrient
penalty objective function penalty for deficit

47

4.5 Harvest decision

If you do not want to implement a full advanced consumption model, but do want to let farmers react to
the results of the harvest, e.g. by buyingmore animal feed if the hay harvest was worse than expected,
you can let agents solve a second production MILP after harvest. Consumption is determined as usual
using the basic consumption model.

The harvest decision is activated by including the following line in the model configuration:
HARVEST_DECISION = 1

This second MILP is solved after harvest. Compared to the pre-season production decision, it will
contain actual yields and actual prices instead of expectations. Like for the consumption stage, you
can use the consfix attribute to fix activities that can’t be changed at the end of the season (you
should at least fix all land use activities except fallow), and you can use the #harvest> subelement
to change any coefficient that should differ from the pre-season values.

4.6 Hydrology

4.6.1 EDIC: Sector-based Hydrology

The EDIC model is a simple sector-based node-link hydrology model used in the Chilean case. It
is hard-coded into the MPMAS executable and interacts with the CropWat model, which simulates
crop growth under water deficit and monthly irrigation decisions. Here we only point to the necessary
entries for mpmasql, consult a full description of the EDIC model for further information. (Note that the
random water rights allocation is not yet implemented in mpmasql.)

You can activate the EDIC model by setting the LANDSCAPE_MODEL entry under [SUBMODELS]
in the cfg-File to 1. Second, you should set the VINFLOWS variable to two, third you should activate
IRRIGATION.
[SUBMODELS]

LANDSCAPE_MODEL = 1

IRRIGATION = 1

VINFLOWS = 2

To use the EDIC model you will have to provide additional input in your cfg-file. First, your REGION-
table needs additional columns, as shown in Tab. B.22. Second, you need the additional MPMAS TA-
BLES described in Tab. B.9, Section B.3. (Note that months should be specified as calendar months,
mpmasql automatically transforms these into irrigation season months based on the SEASONSTART and
SEASONEND values given in the [TIME] section.)

4.7 Fine-tuning of OSL solver

The OSL solver is a very powerful tool to solve mixed-integer programming problems. Apart from the
branch-and-bound and LP solvers, it offers a number of preprocessing tools that help to improve the
efficiency of the main solver. These preprocessing tools may be combined in very different constella-
tions.

Unless you choose a quadratic problem, mpmasql assumes you want to use the costumizable MP-
MAS solver mode 4 (modes 1-3 can be considered outdated and obsolete). The general idea behind
mode 4 is that you have several attempts to solve the MILP. In each attempt (except the last) a solution
is searched using the specified tool. The attempt ends if either the optimal solution has been found,

48

or the attempt reaches specified limits on the number of nodes to process or feasible solutions to
find. For each attempt you can add additional preprocessors to the solving sequence, using a simple
configuration for the first attempts and only if the solution proves too complicated and the attempt
reaches its limit, use more preprocessing tools in the next attempt. You can also decide to keep a
solution at the end of an attempt, if the deviation of the solution found from the estimated best solution
is within acceptable bounds. See section B.2 and the OSL solver manual for more information about
the specific settings for mode 4.

4.8 Quadratic Problems

Apart from mixed integer linear programs, the agents’ production, investment and consumption deci-
sions may also be formulated as quadratic programming (QP) problems.

The generic formulation of a QP problem is as follows:

max!
1

2
xTQx + cTx (4.2)

A~x ≤ b (4.3)
(4.4)

The linear part of the objective function (cTx) and the constraints are implemented similar to the
linear programming problem. The quadratic part (12xTQx) includes the matrix Q, which is symmetric
with as many columns (and rows) as the length of the vector of solution variables x.

4.8.1 Example starting from a scalar valued function

To understand the meaning of its coefficients, it may be helpful to use an example with two solution
variables and rewrite the formula as a scalar function:

Q =

(
q11 q12
q21 q22

)
(4.5)

1

2
xTQx + cTx =

1

2

(
q11x

2
1 + q22x

2
2 + q12x1x2 + q21x1x2

)
+ c1x1 + c2x2 (4.6)

=
1

2
q11x

2
1 +

1

2
q22x

2
2 +

1

2
(q12 + q21)x1x2 + c1x1 + c2x2 (4.7)

So, as can be seen, the diagonal elements of the matrix, q11 and q22, are twice the coefficient of the
square of x1, respectively x2. The off-diagonal elements ofQ represent the coefficients of the product
of two variables and those associated to the same two variables should be equal (hence, the symmetry
of the matrix). In case all the elements of Q related to a solution variable are zero, this variable has
no quadratic component and enters the solution function only linearly. For simplification, in MPMAS
only those variables with at least one non-zero element in Q need to be marked as quadratic and
considered in the formulation of Q.

Implementation of a quadratic programming problem in mpmasql includes two steps. First, all quadratic
activities have to bemarked as such, using the quadratic attribute. Second, the subelement #quadratic>
is used to specify the elements of the Qmatrix of the row (first index) associated with the activity. The
field names of the subelement refer to the columns of the Q matrix using activity identifiers. (The

49

actual order of columns and rows is automatically determined by mpmasql according to the order of
activities in the decision matrix.)

Remember that the element ofQ referring to themultiplication of the activity with itself (e.g. for the ac-
tivity maize_sell the value for #quadratic>maize_sell) should be double the value observed in the
scalar notation of the objective function. Also recall that all elements associated to the same two vari-
ables should be equal. For example, in the activity maize_sell the value assigned to #quadratic>wheat_sell
needs to be the same as the value assigned to #quadratic>maize_sell in the activity wheat_sell.
mpmasql will cross-check this.

Example implementation, model structure file,

#class CROPS {

#activity sell {

...

quadratic #= 1

...

#quadratic > #foreach(CROPS)_sell #= #table(quadratic_terms , 3,

[#this(instance), #this(field , 1)])

}

}

and data file:

quadratic_terms = (sql ,2) {

"SELECT 'wheat ', 'wheat ', 2

UNION SELECT 'barley ', 'barley ', 4

UNION SELECT 'maize ', 'maize ', 6

UNION SELECT 'wheat ', 'barley ', 1

UNION SELECT 'wheat ', 'maize ', 2

UNION SELECT 'barley ', 'wheat ', 1

UNION SELECT 'barley ', 'maize ', 0.5

UNION SELECT 'maize ', 'barley ', 0.5

UNION SELECT 'maize ', 'wheat ', 2

"

}

4.8.2 Example for quadratic risk programming

Quadratic programming is often used to model risk behavior using a functional form like

E − 0.5rV (4.8)

as objective function (see e.g. Hardaker et al. 2004, p. 192), where E is the expected value of the
gross margin, r is the risk aversion coefficient, and V is the variance of the total gross margin. E is
equivalent to the linear part of the objective function c′x, while V is calculated as x′Σx, where Σ is the
variance-covariance matrix of the gross margins of the individual production activities.

To implement this in MPMAS the Q matrix needs to be set to −1 ∗ r ∗ Σ, as can easily be seen by
comparing equations 4.8 and 4.5.

50

4.9 Exogenous changes tomatrix coefficients and agent-independent
right hand sides

Sometimes you may want a matrix coefficient or and agent-independent capacity to be changed at a
certain point of the simulation, e.g. to reflect a shift in policy. This can be achieved by adding fields
with the #exchange> marker to the activity or constraint in question.

The general syntax for coefficients is
#activity ... {

#exchange > <id_of_constraint >_<year_of_change > #= <new_value >

}

, whereas right hand side values are exogenously changed as follows
#constraint ... {

type #= MASzero

#exchange > value_ <year_of_change > #= <new_value >

}

Note that the timing of the change is given as explicit year. mpmasqlwill automatically adapt thematrix
file depending on the value of your STARTYEAR configuration entry. This also holds for standalone
matrix generation.

For example, in the following case:
#activity soil_transfer {

#exchange >EU_livestock _limit_1994 #= -10

#exchange >EU_livestock _limit_1999 #= -2

#exchange >EU_livestock _limit_2001 #= -1.9

#exchange >EU_livestock _limit_2002 #= -1.8

}

If your STARTYEAR is 1998, the value of the coefficient of soil_transfer in the constraint EU_livestock_limit
will be -10, in any stand alone matrix and in the first period of the multi-agent model. It will change to
-2 in the second period of the multi-agent simulation, then to -1.9 in the fourth, and to -1.8 in the fifth.

4.10 Fragmentedmarkets: differentiate prices or LP coefficients
between different groups of agents

The ‘fragmented markets’ feature let’s you distinguish prices, i.e. objective function coefficients, and
MILP coefficients between groups of agents. A group of agents with common prices (or coefficients)
forms one market. By default, you have only one market with ID zero in your model.

If you want more markets, you need to include the following entry into your configuration file:
MARKETS = <number_of_markets >

Markets like populations, soils, networks or clusters need to be numbered from zero to the number
of markets minus one. To assign an agent to a specific market you need to include the special asset
which_market into the asset table, and give it the corresponding number of the market. By default,
all agents are part of market 0.

Within the model structure file you can then use the local variable #this(market) to differentiate
values between different markets. This local variable works in the value definitions of orow and
orow_<year>, MILP coefficients of activities, as well as #exchange> and #harvest> subelements.

51

It does not work in ...by lists or field definitions, as the structure of the MILP needs to be the same
as usually. It also will not work in asset definitions.

4.11 Producer organizations

Producer organizations can for example be marketing cooperatives of small holders that collect the
produce of their members, process, store and sell it, and distribute their profit among members. The
following examples are given in terms of such marketing organizations, however, also other types
of organizations can be modeled using MPMAS producer organizations. Agents can be members
in several producer organizations, and each producer organization may offer various services to its
members. Note: Currently, producer organizations cannot be used in combination with fragemented
markets.

If the producer organization feature is activated, agents solve a marketing decision problem after
crop yields have been determined deciding how much of their harvest they want to market through
their producer organization. After that the producer organizations solve their own decision problem
determining what to do with the collected harvest and determining their profit. After that the profit is
redistributed among its members. Only after that, farm agents then take their consumption (4.4.2) or
‘harvest’ decision (4.5).

4.11.1 The producer organization

Producer organizations are activiated by including a PRODUCER_ORGANIZATIONS table into the [MP-
MAS TABLES] section of the data file. mpmasqlwill automatically determine the number of producer
organizations from the number of entries in thie table. The table has one key column and at least two
further columns. They first (key) column should contain the running number of the producer organiza-
tion starting from 0. The second column contains a name or description of the producer organization,
and the third column should contain the relative path to a “.cll”-file containing the decision problem of
the producer organization. Feel free to add further columns for your own use.
[MPMAS TABLES]

PRODUCER_ORGANIZATIONS = (sql) {

"SELECT 0, 'PO wheat ', 'cfg/po.cll ', 'wheat '

UNION SELECT 1, 'PO maize ', 'cfg/po.cll ', 'maize '"

}

The .cll file for producer organizations looks similar to a standard .cll file except that it should addi-
tionally contain its own [INSTANCES] section. Further, as of now, producer organizations do not have
assets, so #asset, #perennial or #livestock entries are meaningless. Only #exchange> subele-
ments are defined. MASzero constraints can be used to set fixed right hand side values.

You can either define separate .cll files for each producer organization or have several producer or-
ganizations share a common .cll file and distinguish between then using the local variable #this(PO),
as in the following example. This local variable works in field and value definitions, ...by lists, the
[INSTANCES] section and #exchange> subelements.

In the following example, a common .cll file is used to define the decision problem of a maize and a
wheat marketing organization, each of which runs a grain storage and has to decide when to sell its
produce.
[ACTIVITY TYPES]

sales , default , storage , transfer , finance

[CONSTRAINT TYPES]

balance , default , finance

52

[INSTANCES]

POCROPS = [#table(PRODUCER_ORGANIZATIONS , 4, [#this(PO)])]

FINANCIAL = [account]

[MODEL]

#class POCROPS {

#activity collect_from_members {

name #= "Collect " #this(instance) " harvest from members"

unit #= t

type #= transfer

#this(instance)_production_of_members #= 1

#this(instance)_at_PO #= -1

account_fbalance #= 0.001

}

#activity sell_immediately {

name #= "Sell " #this(instance) " immediately"

unit #= t

type #= sales

#this(instance)_at_PO #= 1

account_fbalance #= - #table(prices , 3 , [#this(instance),

#var(STARTYEAR) - 1])

}

#activityby sell_after_month #steps (1,11,1) {

name #= "Sell " #this(instance) " after " #this(by, 1) "

months"

unit #= t

type #= sales

#this(instance)_stored_for_#this(by ,1) #= 1

account_fbalance #= - #table(prices , 3 , [#this(instance),

#var(STARTYEAR) - 1]) * (1.4 - 0.01 *(#this(by ,1) -7)

^2)

}

#constraint production_of_members {

name #= #this(instance) " production of members"

unit #= t

type #= balance

}

#constraint at_PO {

name #= #this(instance) " transported to PO"

unit #= t

type #= balance

}

#constraintby stored_for #steps (1,11,1) {

name #= #this(instance) " stored for " #this(by , 1) " months"

unit #= t

type #= balance

}

#activityby store_until_month #steps (1,11,1) {

name #= "Store " #this(instance) " until end of month "

#this(by ,1)

53

unit #= t

type #= storage

#this(instance)_at_PO #= 1

#this(instance)_stored_for_#this(by ,1) #= -1

account_fbalance #= 0.1 + 0.01 * #this(by ,1)

}

}

#class FINANCIAL {

#constraint fbalance {

name #= "Financial balance"

unit #= #var(CURRENCY)

type #= finance

}

#activity profit {

name #= "Financial balance"

unit #= #var(CURRENCY)

type #= finance

orow #= 1

#this(instance)_fbalance #= 1

}

#activity fix_costs_accounting {

name #= "Fix costs"

unit #= #var(CURRENCY)

type #= finance

#this(instance)_fbalance #= 1

#this(instance)_fix_costs #= -1

}

#constraint fix_costs {

name #= "Fix costs"

unit #= #var(CURRENCY)

type #= MASzero

value #= #if(#this(PO) == 0, 5, 10)

}

}

4.11.2 The farm agents’ marketing decision

Similar to the consumption or harvest decision stage, certain decisions have already been taken and
can not be reversed in the the marketing stage (e.g. the cropping decision). Activities that cannot be
changed in the marketing stage are marked by setting the marketfix attribute of the activity to one.
#class CROPS {

#activityby production_on_soil #foreach(SOILS) {

...

marketfix #= #ifthenelse ("'" #this(instance) "' eq 'fallow '",

0,1)

...

}

}

Further, the activities that represent the decision of agents to market through the producer organi-
zation have to be included. In our example, it just consists of the corresponding sales activity and
the symbolic object representing membership in the PO, which is required for the agent to have the

54

option to use the PO marketing channel. (Note: The table POs is just an auxiliary user table linking
crop to PO number. The #harvest> subelement also applies to the marketing stage.)

#class POCROPS {

#activity sell_through_PO {

name #= "sell "~# this(instance)

type #= MASsell

unit #= t

orow #= #table(prices , 3 , [#this(instance), #var(STARTYEAR) -

1]) * 1.05

orow_#foreach(YEARS) #= #table(prices , 3 , [#this(instance),

#var(STARTYEAR) - 1]) * 1.05

#this(instance)_balance #= 1.1

#harvest >#this(instance)_balance #= 1

#this(instance)_PO_member #= 1

}

#asset PO_membership {

name #= #this(instance) " PO membership"

div #= 0

symbolic #= 1

lifetime #= 1

acqcost #= 0

eqshare #= 1

irate #= #var(INTEREST_SHDEP)

con #= #this(instance)_PO_member

act #= #this(instance)_PO_become_member

multiplier #= 1000

innogrp #= never

#producer_organization >membership #= #table(POs , 2,

[#this(instance)])

}

#constraint PO_member {

name #= "Member in PO " #this(instance)

type #= ability

unit #= t

}

#activity PO_become_member {

name #= "Become member in " #this(instance) " PO"

integ #= 1

ubound #= 0

}

}

4.11.3 Linking farm agents and producer organizations

Finally, farm agent activities and producer organization services still need to be linked. First, each pro-
ducer organization needs to know itsmembers. This is achieved through the #producer_organization>membership
element that can be added to symbolic investment objects and takes the ID of the PO as an argument.
Each agent that owns such an asset is considered a member of the PO. There may be several types
of assets that indicate a membership in a PO, but each asset can only indicate membership in one
single PO.

Second, members activities need to be accounted for in the PO decision problem, and the result of
the PO activity needs to be reinserted into the final farm agent outcome. These linkages are defined
in the table PRODUCER_ORGANIZATION_SERVICES in the [MPMAS TABLES] section. This table needs

55

six columns, two of which are key columns. The first column contains the PO number, the second
the PO service (remember a PO may offer several services). The third column contains the identifier
of the activity in the farm agent decision problem that indicates the quantity of the service the agent
wants to apply for, i.e. in our case the quantity of produce it offers to the PO. The fourth column
indicates the constraint in the PO decision problem where the sum of all member service applications
is entered on the right hand side, i.e. in our case the total amount of produce offered to the PO by
its members. The fifth column contains the identifier of the activity in the PO decision problem which
indicates how much of the produce was actually taken up by the PO. The sixth column contains the
identifier of the activity in the PO decision problem which indicates the income obtained by the PO
related to this service that is to be redistributed among the agents.

PRODUCER_ORGANIZATION_SERVICES = (sql) {

" SELECT 0, 'wheat_sale ', 'wheat_sell_through_PO ',

'wheat_production_of_members ',

'wheat_collect_from_members ', 'account_profit '

UNION SELECT 1, 'maize_sale ', 'maize_sell_through_PO ',

'maize_production_of_members ','maize_collect_from_members ',

'account_profit '

"

}

4.12 Diffusion of innovations

MPMAS includes a module for the communication process involved in the diffusion of innovations.
This model assumes that the adoption of an innovation consists of two phases: First, an agent needs
to learn about an innovation and be convinced that it actually works, then second he will check,
calculate and assess whether it is profitable for him to actually use it himself. The second phase is
inherently represented by solving the optimization problem in the investment/production decision, if
the activities related to the innovation are part of the solution, the farmer adopted the innovation.

The diffusion of innovations module represents the first phase, and thus deals with the question,
whether the activities related to the innovation are at all included in the optimization problem. For
short, agents are grouped into communication networks and innovativeness segments. Networks de-
termine, which other agents actually have an influence on an agent’s knowledge about an innovation.
Different networks are completely isolated, i.e. even if an innovation diffuses through network one,
most agents in network two might never hear of the innovation. Networks might e.g. be defined on
geographical terms, or distinguishing socioeconomic strata e.g. commercial and family farms. The in-
novativeness segments reflect agent traits like curiosity, education, risk aversion and connectedness
relative to other agents. Highly innovative agents are well-connected, hear first about and innovation
and are always prepared to try something new, less innovative agents are more skeptical and less
well connected, they wait and observe the experience of other agents before they themselves try an
innovation. In the model, when an innovation is introduced it becomes available first only to the highly
innovative segment of agents, and only if a certain percentage of this segment (defined by the OVER-
LAP parameter) has adopted the innovation, it becomes available to the next higher segment. The
theory behind the module is described elsewhere in more detail, here we focus on its implementation
in mpmasql.

4.12.1 Defining the number of segments and its thresholds

First, you need to define into how many networks and innovativeness segments you want subdivide
your agent population. You do this by specifying the number of networks and a list of lower thresholds
for each segment in the model configuration. E.g. one network and the five standard segments would
be implemented as follows.

56

NETWORKS = 1

THRESHOLDS = [0, 0.2, 0.16, 0.5, 0.84]

4.12.2 Defining innovations

Then you need to define your innovations, respectively innovation groups. An innovation in MPMAS
is always tied to an investment asset. The adoption of the innovation is actually modeled as an
investment into this asset.

To make an asset an innovation, you have to assign it to an innovation group. This is done by setting
the innogrp attribute of the asset.

If your innovation is actually represented by an asset anyway (e.g. in the case of a new type of
machinery) you can directly work with this asset. E.g. the following would make all machinery part
of the innovation ‘mechanization’ (Of course, most of the times you would probably use a \#table-
function to assign different types of machinery into different innovation groups.)

#class MACHINERY {

#asset machinery_asset {

...

innogrp #= mechanization

...

}

}

In other cases, (e.g. when the innovation is the access to a new market), you have to introduce
a symbolic access asset without any cost and infinite lifetime, and also the corresponding invest-
ment activity and constraints. All activities related to the innovation are then restricted by a positive
requirement in the access constraint.

E.g. for an access to export markets, which allows selling products at a higher price, one might use
the following implementation.

#class PRODUCTS {

#activity sell_for_export {

...

export_access #= 1

...

}

}

#class ACCESS {

#asset access_asset {

name #= ...

symbolic #= 1

act #= #this(instance)_get_access

con #= #this(instance)_access

multiplier #= -1000000

lifetime #= 100

interest #= 0

eqshare #= 1

innogrp #= #this(instance)

div #= 0

}

#constraint access {

name #= ...

unit #= ...

57

}

#activity get_access {

name #= ...

unit #= ...

integ #= 1

ubound #= 1

}

}

The multiplier should of course be chosen adequately high and the instance ‘export’ should be in-
cluded in the class ACCESS.

4.12.3 Defining availability and accessibility of innovations

To define which object is available in which segment at the beginning you need to include the table
INNOVATIONS into the MPMAS TABLES section. E.g.

[MPMAS TABLES]

INNOVATIONS = (sql) { "SELECT network , segment , innovation_group ,

availability , accessibility FROM tbl_innovations "}

A corresponding table for our example could look as follows: In the example, mechanization has

network segment innovation_group availability accessibility
0 0 mechanization 0 1
0 1 mechanization 0 1
0 2 mechanization 0 1
0 3 mechanization 0 0
0 4 mechanization 0 0
0 0 export 4 0
0 1 export 4 0
0 2 export 4 0
0 3 export 4 0
0 4 export 4 0

already diffused into the early majority segment, while export access is an innovation which will only
become available in the fourth period of the simulation.

4.12.4 Assigning agents to networks and segments

Agents can be assigned to an innovation segment in two different ways. On the one hand, the special
asset ‘innovativeness’ can be included into the ASSET_ENDOWMENTS, respectively ASSET_CDF
tables and assigned the value of the segment.

On the other hand, the innovativeness of an agent may be determined by the assets she owns. To do
so, you can assign an innovativeness attribute to each asset. The agent will be assigned to the lowest
innovativeness value indicated by any of her assets, the value given in the ASSET_ENDOWMENTS,
resp. ASSET_CDF table will then only apply if it is lower than this.

E.g. in our example agents, which own machinery should be assigned to segment 2 or lower, other-
wise the initial distribution of assets would be inconsistent with the diffusion of the innovation. It would
therefore be necessary to include the innovativeness attribute for all machinery assets and set it to
two:

58

#class MACHINERY {

#asset machinery_asset {

...

innovativeness #= 2

...

}

}

4.12.5 Fine-tuning the diffusion process

The diffusion process can be fine-tuned using the OVERLAP (see B.3) and the CUMADOPT and
COMTYPE parameters (see B.2).

4.13 Using agent attributes in the decision problem

Note: This feature currently only works with in the Germany-version of MPMAS. Ask a maintainer to
activate it for your application if you want to use it.

Sometimes you will want to make agent decisions dependent on agent-specific characteristics that
are not covered by any of the other submodels. The #agent_attribute_to> subelement allows you
include further agent-specific characteristics into the matrix.

Used within constraint definitions,
#agent_attribute_to > value #= <agent attribute name >

would enter the agent-specific value for the desired characteristic on the right-hand side of that con-
straint.

Within activity definitions,
#agent_attribute_to > orow #= <agent attribute name >

would enter the agent-specific value for the desired characteristic as the objective function coefficient
of that activity, while
#agent_attribute_to > <constraint identifier > #= <agent attribute

name >

would enter it as a coefficient of that activity in the indicated constraint.

Currently the following agent attributes have been activated for the use with this feature:

Attribute identifier Description
age_household_head The age of the household head (only with Ad-

vanced Demography Model)
age_successor The age of the next successor to the house-

hold head (only with Advanced Demography
Model)

last_income Last year’s income

4.14 Using plot attributes in the decision problem

Note: This feature currently only works with the special country switch for Germany (5)

59

Similar to agent attributes also plot-related attributes can be entered into the matrix. These plot at-
tributes are specified in user-definedmaps, which are namedCatchMap00Udef00.txt, CatchMap00Udef01.txt,
. . . . Each of these maps may contain a user-defined attribute that is specific to a grid cell of the map.
To use these maps you need to set NUDEF in the model configuration to the number of maps you
want to use. (Note: Maps need to be consecutively numbered from 0 to 1 - NUDEF).

For incorporating these values into the decision problem a #landscape_attribute_to> subelement
is provided by mpmasql, with the generic syntax:
#landscape_attribute_to > <what > #= <aggregated_plot_attribute >

<what> can be ’value’ for the RHS value of a constraint, ’orow’ for the objective function coefficient
of an activity or any ’constraint_idientifier’ for the coefficient of an activity in the constraint.

Plot attributes need to be aggregated by soil type, respectively nutrient response unit to be entered
into the matrix. The <aggregated_plot_attribute> expression consists of three elements:
<aggregation_function >_S<soil_type >_P <mapid >

Aggregation functions currently defined are:

Code Function
mean mean, average
sum sum
med median (with average of two values for even

samples)
min minimum
max maximum
medl (with smaller of two values for even samples)
medu (with greater of two values for even samples)

For example, the following would average the value in the CatchMap00Udef00.txt file over the cells
with soil type/NRU 0 and enter it on the right hand side of constraint elevation.
#constraint elevation {

...

#landscape_attribute_to > value #= mean_S0_P0

...

}

4.15 Household member-specific attributes

Note: This feature currently only works with the advanced demography model and the special country
switch for Germany (5)

For example, for modeling farm succession, it is useful to be able tomark certain householdmembers
with their own attributes, e.g. to make sure that one person can receive subsidies for young farmers
only once.

By adding the #hhmember_mark> subelement to an activity, you can request that the solution value of
of this activity in the investment problem be added to or subtracted from a household member-specific
marking value. The field definition of the #hhmember_mark> subelement indicates for which household
members the value should be recorded – currently, ’household_head’ and ’successor’ are the only
options – and the value definition defines whether the value should be added (’add’) or subtracted
(’subtract’).

For example, the following would add the solution value of the employ_successor activity to the mark
attribute of the next potential successor of the household head.

60

#activity employ_successor {

...

#hhmember_mark > successor #= add

...

}

The recordedmarks can be used in any decision problem using the feature described in Section 4.13.
The corresponding attribute names are ’mark_household_head’ and ’mark_successor’.

4.16 Selling of assets

Note: This feature currently only works with the special country switch for Germany (5), not for peren-
nial or livestock assets or any other assets with land demand.

To allow agents the selling of farm assets, you can include activities of type ’MASdisinvest’. Since an
agent may own several units of the same type of asset with different ages and thus different potential
resale values it is useful to include several disinvestment activities for each asset you want an agent
to be able to sell.

To define a disinvestment activity, you only need to set the activitiy type to ’MASdisinvest’ and add
an #disinvest>asset field that indicates the type of asset which is sold by this activity. Remeber to
use an integer activity for indivisible assets.

For example, the following would define five disinvestment activities for the tractor asset:

#activityby tractor_disinvest #steps (1,5,1) {

type #= MASdisinvest

#disinvest >asset #= tractor

integ #= 1

ubound #= 0

lbound #= 0

}

The values for the upper and lower bounds should be set to zero (mpmasql will do so automatically
anyway), as the upper bound will be set by MPMAS according to the number of assets owned by the
agent represented by this activity.

While you are free to define coefficients for the activity, MPMAS will fill certain coefficients of the
activity according to the individual assets owned by the agent. It will set the multiplier value into
coefficient of the capacity constraint to account for the reduction of capacity and it wil set coefficients
in the MASong, MASly1 and the CASHFLOW_COEF constraint, if applicable, to record the additional
liquidity and the reduction in debt service achieved by the disinvestment. (Note that on selling the asset
the agent will have to repay any loan taken for it, even if the resale value is lower than the remaining
principal to be paid.) It will also set the objective function coefficient of the activity. Assuming a correct
objective function value is a bit tricky. In terms of accounting, the sale of an asset only produces
income if the return of the resale is greater then the book value of the asset accounted for in the
balance sheet, if it is lower it even results in a loss. However, for plaaning we might want to assume
that a farmer considers the book value of an asset he does not use anymore to be zero (it will only
lose value over time, but not generate any income). Further disinvestment in MPMAS is associated to
the direct repayment of any loan taken on the asset, so that disinvesting will also save interest which
otherwise would have to be paid.

The objective function coefficient is therefore calculated as

(resale_share * time value of asset - resale_book_share * time

value of asset + saved_interest) * INTEREST_SHDEP

61

(Multiplication with INTEREST_SHDEP transforms the change into an infinte annuity for the an-
nualized form of investment calculation used in the MPMAS investment decision.) The two share
coefficients used in the formula have to be defined in the corresponding asset. For example:

#asset tractor {

...

resale_share = 0.9

resale_book_share = 1.0

disinvest_completely = 0

...

}

The resale_share determines, which share of the time value of the asset the agent may recover
by selling it. Besides the objective function coefficient it directly affects the increase in cash caused
by the selling. The resale_book_share only affects the objective row and determines whether the
agent fully considers the change in the balance sheet for his decision. In some cases the asset might
denote e.g. a stable place and the amount of the asset owned by an agent does not correspond to a
number of single asset objects, but rather to the size of one asset (i.e. a stable). In this case, youo
would typically want the agent to either sell the full asset (the whole stable) or nothing rather than only
a few stable places. This can be achieved by setting disinvest_completely attribute to one.

62

Chapter 5

Testing decision models with
mpmasql and mqlmatrix

While developing and calibrating your model, you will often encounter situations where things do not
work as expected. In case you suspect the error to lie in the decision matrix, you will need to have a
look at the prepared matrix, experiment again with some different coefficients and solve it outside of
MP-MAS. Although you can open the matrix (or its commented version) in a spreadsheet program,
MPMAS matrices can easily grow large and hard to handle as a whole in spreadsheets.

mqlmatrix provides an interface to browse, experiment and solve your matrices using the standalone
solver of MPMAS (MilpCheck). It can read a number of different matrix formats, that can are either
produced as debugging output of MP-MAS or directly created using mpmasql (see 5.2). All of these
files only contain numbers and no descriptions, and so mqlmatrix has to rely on the ActivityInfo and
ConstraintInfo files that mpmasql creates when creating mpmas input files.

mqlmatrix <name_of_matrix_file> <typeflag> <otherflags>.

where <typeflag> specifies what type of matrix the browser should expect. (See 5.2 for more
information on matrix types). It is required and should be one of:

-V <number> mpmas input matrix (.dat)
-S standalone matrix (.mtx)
-F failed matrix (.mip/.mpx)
-D requested matrix (.mip/.mpx)

The optional <otherflags> are used, inter alia to help mqlmatrix find the model info files required
(see 5.3). For an overview of all command line options run

mqlmatrix --help

One of the most useful functions of mqlmatrix is showing selected parts of the matrix in a spread-
sheet. At least under Ubuntu 10.04, we strongly recommend installing gnumeric for this task, as
OpenOffice takes rather long to open. mqlmatrix will automatically choose gnumeric if it is available.

5.1 Interactive commands

Once you loaded the matrix into memory, mqlmatrix provides an interactive command-line environ-
ment.

The following commands are available:

63

GENERAL:
exit quits the interactive session
help prints this help
quit quits the interactive session

I/O
printmtx <suffix> saves the matrix as .mtx into a file with

the indicated <suffix>
printtxt <suffix> saves the commented matrix into a file

with the indicated <suffix>
reload reloads the matrix from the original file
solve {<suffix>} tries to solve the matrix and to import

the solution vector if successful
impsol <filename> import solution vector from file

COLUMN/ROW INFORMATION
info prints general information about the

matrix
act <id> prints information about activity with

mpmasql identifier <id>
con <id> prints information about constraint with

mpmasql identifier <id>
col <C> prints information about matrix column

no. <C>
row <R> prints information about matrix row no.

<R>
coef col <C> {-l} prints all coefficients <> 0 of matrix col-

umn no. <C>
coef row <R> {-l} prints all coefficients <> 0 of matrix row

no. <R>
rhs <R> prints the rhs for row <R>
lhs <R> calculates the LHS for row <R> based

on the current solution
lhslb <R> calculates the lhs for row <R> based on

the lbounds of columns
Q <C> show Q matrix entries for column C
multiply Q <value> multiply Q matrix by <value>
divide Q <value> divide Q matrix by <value>

LISTING
list act {-l -o -t} list all activities
list con {-l -o -t} list all constraints
list == {-l -o -t} list all equality constraints
list lhs {-l -f -e -d -o -t} prints all LHS values <> 0 (or all with -f)
list rhs {-l -f -e -d -o -t} prints all RHS values <> 0 (or all with -f)
list sol {-l -e -d -o -t} lists the solution for all activities where

it is <> 0
list int {-l -o -t} list all integer activities
list lb {-l -o -t} list all activities with lower bounds > 0
list lhslb {-l -f -e -d -t -o} list the LHS based on lbounds where

LHS <> 0
Options for listing commands:
-l redirects the output to pager in a sepa-

rate window

64

-o <filename> redirects the output to filename
-e scientific number format
-d <n> number of decimals (default n = 3)
-f prints all elements, not only those <> 0
-t <type> list only constraints/activities of mp-

masql type <type>

TABLE VIEW
tab <C1>..<C2> : <R1>..<R2> view tableau between columns C1 and

C2 and rows R1 and R2 in spreadsheet
tab <typelistA> : <typelistC> view tableau for activities/constraint

of types given in spreadsheet, where
<typelist> is a comma-separated list of
mpmasql types

MODIFYING
modify row <R> (<attr> = <new value>) sets attribute <attr> of row <R> to <new

value>
modify col <C> (<attr> = <new value>) sets attribute <attr> of column <C> to

<new value>
modify rows <R1:R2> (<attr> = <new value>) sets attribute <attr> of rows <R1> to

<R2> to <new value>
modify cols <C1:C2> (<attr> = <new value>) sets attribute <attr> of column <C1> to

<C2> to <new value>
modify coef <C> <R> <new value> sets coefficient in column <C> and row

<R> to <new value>

OTHER OPTIONS
set_risk_aversion <value> set risk aversion coefficient for evalua-

tion of quadratic part of objective val-
ues. (Note: has no effect on current Q
matrix)

{} denotes optional arguments

5.2 Formats of MP problems

mqlmatrix can read mpmas input or standalone matrices created by mpmasql, matrices saved during
mpmas simulations automatically, because the OSL failed solving it, or matrices you requested to be
saved by mpmas during simulation with the DBGMILPS entry in the mpmasql control file.

5.2.1 MPMAS input format (.dat)

You can directly read in the mpmas matrix input file (usually named <scenarioname>_MILP.dat) for
inspection. Solving such a matrix usually does not make sense, as the RHS is empty and several
coefficients are usually missing (e.g. yields or investment cost). The type flag to use is -V, and you
have to provide the additional information, whether you use a second production or a consumption
decision in your model. (Note: if you use TSPC this won’t work yet).

-V 0 basic format
-V 1 with second production stage ("harvest milp")
-V 2 with advanced consumption model

65

If your matrix is very large, it will take a long time to write it and to load it into mqlmatrix. If you run
mpmasql with the flag --compact it will write only non-zero coefficients in triplet format into the matrix
file. This file cannot be used by MP-MAS, however you can look at it in mqlmatrix if you also use the
--compact flag when loading.

5.2.2 MPMAS standalone MP problem format (.mtx)

As noted above, solving a standard mpmas input matrix does not make sense, as the RHS is empty
and several coefficients are usually missing (e.g. yields or investment cost). It is often useful to really
test your matrices before including them into a full MP-MAS setup. Fortunately, mpmasql has a special
feature for this task.

Creating standalone MP problems with mpmasql

If you run mpmasql with the flag -S it omits creating all other input files and creates a matrix file in the
correct layout for standalone matrix use (.mtx). (Like for .dat matrices, you can also use the �compact

flag to save disk space and time.)

However, you have to help mpmasql by putting in the additional coefficients and providing right hand
sides. To avoid having to manually change your files whenever you want to create a standalonematrix,
use the #ifalone function (see C), then mpmasql will know which value to take when run with -S and
which when not.

You can create several matrices each with a different RHS in one go, similar to scenarios. Sets of
Right-hand-side values (Right-hand-sides or RHS, for short) are defined in much the same way as
scenarios are. You can convert several matrix files with differing RHS at the same time. You can also
mix this with the scenarios feature, i.e. use the same collection of RHS once for every scenario.

You need a RHSDEF table, with the columns ‘rhs’, ‘constraint’, ‘rhsvalue’. Again, the column or-
dering is important, the column naming is not and the combination of the first two should be unique.
‘constraint’ refers to a constraint by the internal constraint identifier, and value specifies the value to
be put on the right hand side. Values not specified are set to zero.

Table 5.2: Sample RHSDEF table
rhs constraint value
farm1 farm_labendow 3
farm2 farm_labendow 1
farm1 1_machinery_owned 2
farm2 2_machinery_owned 1

In the example (Tab. 5.2), assuming the RHSs represent a farming household each, ‘farm1’ has
three units of labour and two units of ‘MacT067_owned’ (which in the sample files stands for a 67kW
Tractor) and ‘farm2’ has one unit of labour and three units of ‘MacT200_owned’(i.e. a 200kW Tractor
in the sample files).

There are three different ways to specify RHSDEF in the control file:

As an SQL query to the database:

RHSDEF = (sql) { "SQL SELECT statement which can also

span over several lines" }

As a path to an text file in tab-separated format:

66

RHSDEF = (ascii) { "name of an ascii file with tab separated

values" }

or as a request to transform the asset table of the full multi-agent model.
RHSDEF = (transform_assets)

If you use the third option, the RHS is directly created from the ASSET_ENDOWMENT, HOUSE-
HOLD_COMPOSITION and AGENT_INFO tables (in the data file), and the soil RHS is either directly
read from mpmas input maps, if you specify the map directory in the control file:
RHS_MAPDIR = directory

, or alternatively read from a table specified in the control file:
RHS_SOILTAB = (sql) {"SQL SELECT statement which can also

span over several lines"}

Similar to the SCENLIST entry, you then further need an RHSLIST entry in your control file, telling
mpmasql, which RHS should actually be created.

You also have three options to specify RHSLIST :
RHSLIST = (sql) { "SQL SELECT statement which can also

span over several lines" }

RHSLIST =(ascii) { "name of an ascii file with one entry on each new

line" }

RHSLIST = (list) {[list of comma -separated values]}

Loading standalone MP problems with mqlmatrix

To load a standalone matrix you have to run mqlmatrix the using the -S type flag, and additionally
the --compact flag in case you created it with this flag in mpmasql.

5.2.3 MP problems automatically saved by mpmas for debugging

Whenever a decision problem of an agent cannot be solved by the OSL, because it is infeasible,
unbounded or solving it surpasses the time or iteration limit, MP-MAS saves the associated matrix in
the out/test/ folder. These matrices have the extension .mip or if you run mpmas with the -M flag in the
much more compact .mpx format. To load such matrices into mqlmatrix, you have to use the type
flag -F. mqlmatrix uses the extension to distinguish between .mip and .mpx format.

5.2.4 MP problems saved by mpmas for debugging on request

You can also request that the decision problems of a specific agent be always saved by mpmas, e.g.
to check the coefficients dynamically generated at runtime. You only have to include the farmstead
identifier into the DBGMILPS list of the mpmasql control file. E.g.
DBGMILPS = 1235, 124, 345

will save the decision matrices of agents with farmstead id 1235, 124 and 345. The files will be
written into the out/test/ directory and be either in .mip or .mpx format, depending whether you used
the -M flag or not. To load such matrices into mqlmatrix, you have to use the type flag -D. mqlmatrix
uses the extension to automatically distinguish between .mip and .mpx format.

67

5.3 Indicating the location of the model info files

mqlmatrix needs the ActivityInfo and ConstraintInfo files produced by MPMASQL to interprete the
matrix file. There are several options: you can let mqlmatrix guess, help it with guessing, or explicitly
give the files.

If you do not specify file names explicitly mqlmatrix will guess these filenames from the name of the
matrix file and look for them in xlsInput/, e.g.

mqlmatrix -F ../ Mpmas/out/test/Failed_BSL__ 1035_

Preloaded122.mip

will make mqlmatrix look for BSL_ActivityInfo.txt and BSL_ConstraintInfo.txt in xlsInput/

Or, you can specify a different folder using the flag -I <infofiles>, e.g.

mqlmatrix -F ../ Mpmas/out/test/Failed_BSL__ 1035_

Preloaded122.mip -I input/dat/

will make mqlmatrix look for BSL_ActivityInfo.txt and BSL_ConstraintInfo.txt in input/dat/. Or, you
can specify a different folder by placing a file named mqlmatrix.conf into the working directory (the
directory from which you call mqlmatrix) and put in it

infofiles = <folder name >

Or, you can explicitly use the flags -A and -C to tell the script, which files to use, e.g.

-A ../ input/dat/GEN_ActivityInfo.txt -C

../ input/dat/GEN_ConstraintInfo.txt.

5.4 mqlmatrix.conf

By default, mqlmatrix will write files to the current working directory and look forMilpCheck in /usr/local/bin/MilpCheck.
This can be overriden by using the -O <outdir> and -M <milpcheck> flags.

As it would be pretty cumbersome to always specify all these locations by hand, especially as you
usually work in an MPMAS version folder, which has some conventions, you can set your own de-
faults for all of these locations by placing a file named mqlmatrix.conf into the working directory (the
directory from which you call mqlmatrix). If such a file exists, mqlmatrix will read the defaults from
these files, though they can still be overridden using the flags.

The mqlmatrix.conf is a simple text file and can have the following entries (all of them are optional):

outdir = <output directory >

milpcheck = <milpcheck executable >

infofiles = <location of the ActivityInfo and ConstraintInfo file >

68

Chapter 6

Preparing agent populations with
mpmasdist

The tool mpmasdist allows its user to create, endow and spatially distribute model agents. It employs
similar concepts and language elements as mpmasql. Data may be provided in the form of SQL
queries, tables in text files and maps in ESRI ASCII format.

Using mpmasdist, agent populations are sequentially built up over a number of steps. For example,
in a first step, a list of agents is created and in a second step, the number of plots each agent owns
could be determined. In a third step, agents’ farmsteads could be spatially distributed and in a fourth
step, their plots. Subsequently, buildings and machinery could be determined. Content and sequence
of steps can be freely determined by the model user and are defined in the control file in text format
(by convention with the extension .dst).

Each agent is associated to a list of assets and a number of attributes that are generated, changed,
used or deleted during the distribution process. After each step, all the information associated to the
agent population can be saved. Each step can start with the agents in memory or by restoring a
stored agent population from file. In this way, the generation process can be stopped and re-initiated
allowing alterations to later steps without having to run through previous steps again, and also giving
the user the opportunity to split up the generation algorithm over several control files.

The distribution is started by calling mpmasdist with the name of the control file, e.g.

mpmasdist example.dst

6.1 File structure

The control file is subdivided into six parts that bear the headings DB, VARIABLES, TABLES, MAPS,
CONTROL and DISTRIBUTION. The actual steps of the distribution process are defined in the DIS-
TRIBUTION section. The CONTROL section determines, which of these steps will be run. The other
sections define or import the necessary data.

6.1.1 DB

TheDB section contains the information necessary to connect to the database, similar to the mpmasqlsyntax.
It is of course only needed if database queries are to be used. If the password is not provided in the
file, mpmasdist will ask for it at runtime.

69

[DB]

DB = mpmasql_example_db:localhost

DBTYPE = mysql

DBUSER = testuser

DBPWD = testuse

6.1.2 VARIABLES

In the VARIABLES subsection, users may define variables and lists for use in the other section using
the MpmasQL Function Language similar to the use in mpmasql.

[VARIABLES]

SEED = 123

SOILS = #steps(0, 4, 1)

The values of these variables may be overridden when running mpmasdist by using the command
line option --set (see also section A.3).

6.1.3 TABLES

The tables section has the same same syntax as the USER TABLES section in mpmasql (cf. sec-
tion 3.5.4). For example, the code below defines a table ‘land_cdf” with two key columns and fills it
with data retrieved from the database using the shown query.

[TABLES]

land_cdf = (sql , 2) {

" SELECT soil_type , upper_bound , quantity FROM

soil_distribution"

}

6.1.4 MAPS

The MAPS section is used to load maps in ESRI ASCII format. The code below, for example, loads
the map contained in the file study_area_land_use.txt and makes it available for further use under
the name ‘landuse’.

[MAPS]

landuse = "study_area_land_use.txt"

6.1.5 CONTROL

The CONTROL subsection can be used to control which of the distribution steps defined under DIS-
TRIBUTION will actually be performed. The keyword INCLUDE can be used to number the steps
which should be performed. Alternatively, the keyword EXCLUDE to let mpmasdist skip some steps.
If both keywords are used at the same time, only those steps which are listed under INCLUDE, but
not under EXCLUDE are performed (e.g. 11, 11, 13, 14) below.

[CONTROL]

INCLUDE = [10, 11, 12, 13, 14]

EXCLUDE = [4, 5, 12]

MKPATHS = [" input/gis/", "population /"]

70

The MKPATHS can be used to ensure, that certain folders will be created if they do not exists. This
is especially helpful if you create various populations with one control file, and want them to be saved
in different folders.

6.1.6 DISTRIBUTION

The steps that make up the distribution algorithm are listed in the DISTRIBUTION section. The de-
scription of each step starts with STEP <number> \{ and ends with a closed bracket. Steps will be
processed by mpmasdist starting from the step with the lowest to the step with the highest number.
The order they appear in the file is irrelevant, although for consistency and understandability it is, of
course, recommendable to list them in order. Numbers need not be consecutive, so you can leave
gaps in case you might want to introduce a step in between at a later point of time.

Common fields and sections for all distribution types

Steps may perform very different tasks and require very different types of information to do so. All
types of distribution steps do, however, accept the fields DESCRIPTION, TYPE, VERBOSE, SEED,
and the sections AGENTS, OUTPUT, and LOOPS. The TYPE field is required and first defines what
type of distribution should be performed, the DESCRIPTION field is just a comment that will be printed
on screen during runtime in order to facilitate supervision of program runs. The VERBOSE field sets
the level of debugging output, with zero (or omission) being no debugging output. What it is written on
screen depends very much on the type of distribution performed in the step. The SEED field resets
the random generator with the given seed value before performing the step.

The AGENTS section indicates whether a new agent population is created or loaded from a file,
or whether the agent population currently loaded in memory is to be used in the distribution. It also
allows to add or change agent attributes before the distribution starts. The OUTPUT section defines
whether and what information should be written to disk at the end of the steps, and in which files it
should be saved.

As a very simple example, the following code does nothing but saving the current agent popula-
tion in reloadable, binary format into the file agents_after_step_10.dat in the folder defined by the
outfolder variables, which was set in the VARIABLES section of the control file.

[VARIABLES]

outfolder = "out/"

[DISTRIBUTION]

...

STEP 10 {

DESCRIPTION = "Save agents"

TYPE = none

OUTPUT {

STORE_AGENTS #var(outfolder) "agents_after_step_10.dat"

}

}

...

The LOOPS section defines whether the whole step should be repeated and defines iterator vari-
ables, which take on a different value in each loop. For example, the following code would loop over a
class variable and a sector variable and repeat all tasks of the distribution step 20 for each combination
of class and sector (cf. section C.4 for the use of the #table function).

STEP 20 {

...

71

LOOPS {

class = [family , part_time , commercial]

sector = #table(sectors , 0, [])

}

...

}

Note: The OUTPUT section will be processed after running through all loops.

Distribution types

Currently, the following types of distributions have been implemented. They will be described in more
detail in the following sections.

Table 6.1: Distribution types
TYPE Description
none does nothing, only the AGENTS, OUTPUT, DROP_IF, and

CLEAN fields an sections will be processed
fixed deterministic assignment
fixed_repeated deterministic assignment which is repeated until a specified

condition is true
distribute_observation_list distribute a list of individual assets among agents
assign_by_cdf distribute assets to agents following a probability distribu-

tion function
match match agents and list of assets respecting two-sided con-

straints
match_cdf have the asset distribution match a probability distribution

function with two-sided constraints
fit_into_subarea distribute agents over subareas such that upper limits to

attributes in the area are respected
maps_assign_farmstead spatially distributes farmsteads on a suitability map
maps_assign_plots spatially distributes agents plots on a suitability map
maps_artificial generate simplified maps for cases where spatial structure

is irrelevant
make_secondary_maps_for_mpmas create population, cluster, network, sector and catchment

maps in MPMAS format

6.2 Generating, removing, saving and importing agents

At the beginning of each step, the user may define that the next step should be performed with a newly
generated agent population, the agent population currently in memory, or restored from a previously
saved file. If the AGENTS section is completely omitted, or the space between the AGENTS keyword
and the opening bracket is empty, the population currently existing in memory is used.

AGENTS {

}

72

6.2.1 Generating agents

If an mpmasql function language expression is found between the AGENTS keyword and the opening
bracket, it is interpreted as a list of agent identifiers for a new agent population to be created.

Example 1

AGENTS [1, 2, 3] {

}

This would create an agent population consisting of three agents identified by the agent IDs 1,2 and
3 respectively.

Example 2

AGENTS #steps (400 ,500 , 2) {

}

This would create an agent population consisting of 51 agents identified by the agent IDs 400, 402,
404, . . . , 500.

Example 3

AGENTS #table(land , 0, []) {

}

This would create an agent population based on the table ‘land’. Each unique value found in the
first column of the table becomes the identifier of one agent (cf. section C.4 for the use of the #table

function).

Example 4

LOOPS {

sector = [12, 14, 15]

}

AGENTS #this(sector) * 1000 + #steps(1, #table(sectors , 4, [

#this(sector)]), 1) {

}

In this rather complex example, the algorithm loops over a list of three sectors. For each sector, the
number of agents to be created is read from column for of the table sectors (cf. section C.4 for the
use of the #table function). Agent identifiers have five digits, with the first two indicating the sector
and the last three indicating the running number of the agent within the sector.

6.2.2 Removing agents

Individual agents can be dropped from the agent population in the memory at the end of a distribution
step using the DROP_IF field, which takes a condition to determine which agents should be dropped.
This is done after all loops and before any output is saved.

For example, the following code would drop all agents with an agent ID larger or equal to 4000 at
the end of step 30, and all agents whose land attribute is smaller than 10 at the end of step 40.

STEP 30 {

...

DROP_IF = #this(agent , id) >= 4000

73

...

}

STEP 40 {

...

DROP_IF = #this(agent , land) < 10

...

}

6.2.3 Saving agent populations

Agents populations can be saved in two formats: (i) as a tab separated table of agent attributes in
human readable text files by using the AGENTS keyword in the OUTPUT section, or (ii) as a binary
file, which allows to reload the agent population into mpmasdist at a later point of time, by using the
STORE_AGENTS keyword in the OUTPUT section.

The following example code would save the agent population in human-readable format in the file
‘agents.tab’ and in binary format in the file ‘agents.dat’ at the end of step 20.

STEP 20 {

...

OUTPUT {

AGENTS "agents.tab"

STORE_AGENTS "agents.dat"

}

...

}

(Note: For the use in Linux pipes mpmasdist also accepts the keyword STDOUT as a file name in the
OUTPUT section.)

The population attribute list saved by the AGENTS keyword does not contain the specifically des-
ignated list of agent assets and agent household members (see further below), which can be saved
in human-readable format using the keyword ASSIGNMENTS and MEMBERS. This allows an easier
separation of agent characteristics, which are only needed during the distribution process and those
which should enter as asset or household member information into the model. The member and
assigments lists have a file format that facilitates upload to a database.

6.2.4 Restoring agent populations

Agent populations that have been saved with the STORE_AGENTS keyword can be restored the
RESTORE keyword with the filename between the AGENTS keyword and the curly brackets, e.g.

AGENTS RESTORE "agents.dat" {

}

.

6.3 Defining and manipulating attributes and assets

Agents can have attributes that describe characteristics of the agent relevant in the distribution pro-
cess. Agents can be assigned assets and household members, which are kept in separate lists that

74

are themselves attributes of the agents. The list of assignments and household members cannot be
used to formulate conditions or calculate agent characteristics during the distribution, they are rather
intended as a cleaned list facilitating the extraction of those attributes relevant for use in MPMAS later
on. It may thus make sense to let the distribution steps first define and distribute assets as attributes,
and only at the end transform them to designated asset and household member assignments.

6.3.1 Setting and using attributes

Attributes can be created and changed in the AGENTS section. For example, the following code
would create an attribute named liquidity and set it to 1000 for all agents, an attribute named sector,
which is equal to the looping iterator sector and an attribute class, which is an integer between 0 and
4 randomly determined for each agent. Each attribute definition needs to go on a separate line in the
AGENTS section, and consists of a definition of the attribute name and the value it should receive
separated by a #=.

AGENTS {

liquidity #= 1000

sector #= #this(sector)

class #= #floor(#random_number (5))

}

Similar to field definitions in mpmasql, attribute definitions can also create a list of fields with one line of
code using e.g. the #table, #foreach, #steps functions or an explicit array. The function #this(attribute,
. . .) is used to refer to elements in the original list. The function #this(agent, . . .) allows to refer to pre-
viously defined attributes of the agent. So the following code would create 26 attribute for each agent
(named ‘male_hhmember_aged_18’, ‘female_hhmember_aged_18’, ‘male_hhmember_aged_19’, ‘male_hhmember_aged_19’,
. . .), and these would be set to values according to the user-defined table ‘hhmembersbyclass’. For
the code to make sense, we assume this table to contain three key columns, the first containing
the agent class, the second the age, and the third the gender, while in the fourth column a quantity
information might be recorded.

AGENTS {

[male , female] "_hhmembers_aged_" #steps(18, 30, 1) #=

#table(hhmembersbyclass , 4, [#this(agent , class),

#this(attribute , 2), #this(attribute , 1)])

}

To set values of attributes as the result of a predefined distribution algorithm, you can use the
ON_ASSIGN section, which will only assign values to those agents, which have been selected by
the distribution algorithm, and provides specific local variables to refer to the results of the process.
The syntax for the ON_ASSIGN section is a bit different as for the AGENTS section: Since, as you
will see later on, also attributes of observations can be changed here, we need to explicitly mention
that we refer to agent attributes by putting an "agent." in front of the attribute name. Specific local
variables will be discussed during the presentation of individual distribution algorithms.

ON_ASSIGN {

"agent.asset_counter" #= #this(agent , asset_counter) + 1

}

6.3.2 Removing attributes

The CLEAN section allows to remove agent attributes at the end of the distribution step. For example,
the following code would delete the attributes ‘asset_counter’ and ‘unoccupied_soil’ from all agents.

75

CLEAN {

asset_counter

unoccupied_soil

}

6.3.3 Assigning assets and household members

To assign something to the designated list of assets using the ASSIGN section, which is provided
by the different types of distribution algorithms. The same is to with respect to designated household
members, which are assigned in theMEMBERS section. Themost straightforward of the algorithms is
the ‘fixed’ distribution algorithm, which does nothing special and can for example be used to transform
agent attributes into designated assets and members:

For example, the following code would assign an asset named ‘fruit_plantation’ to each agent, which
is sized according to the attribute of the same name, but only if the size is greater than zero.

It similarly creates a designated household member for each corresponding attributes. Finally, the
attributes are deleted and the assets and member lists are saved to files.

STEP 100 {

DESCRIPTION = "Transform attributes to assets"

TYPE = fixed

AGENTS {

}

ASSIGN {

#if(#this(agent , fruit_plantation) > 0, fruit_plantation , [])

#= #this(agent , fruit_plantation)

}

MEMBERS {

[male , female] "_hhmembers_aged_" #steps(18, 30, 1) #=

#this(agent , #this(attribute , 1) "_hhmember_"

#this(attribute , 2))

}

CLEAN {

[male , female] "_hhmembers_aged_" #steps(18, 30, 1)

fruit_plantation

}

OUTPUT {

ASSIGNMENTS #var(outfolder) "agents_assets.tab"

MEMBERS #var(outfolder) "agents_hhmembers.tab"

}

}

(Note: each statement needs to go on one line, line breaks in the example only for readability in this
manual.)

A slightly enhanced version of the ‘fixed’ distribution type is provided by the ‘fixed_repeated’ type,
which allows to repeat the assignments formulated in the ON_ASSIGN, ASSIGNMENTS and MEM-
BERS section while the condition formulated in the DYNAMIC_CONSTRAINTS section are true.

76

6.4 Distribution algorithms for attributes, assets and household
members

mpmasdistoffers a number of predefined distribution algorithms in order to allow flexible random as-
signments of assets, attributes or characteristics.

6.4.1 Distributing a list of observations

The most basic algorithm named ‘distribute_observation_list’ randomly allocates a list of observations
among agents. Let us assume we have observed a number of fruit plantation in the area and gathered
this information in the following table, which was loaded to memory as ‘fruit_plantations’ with one key
column in the TABLES section.

id crop size quantity
1 apple 12 2
2 pear 8 1
3 apple 34 1
4 apple 5 3
5 kiwi 13 1
6 kiwi 1 10
. . .

According to the table, we want to have two apple plantations of size 12 (let’s say ha) in our pop-
ulation, one 8 ha pear plantation and so on. With the following code, we would tell mpmasdist to
randomly distribute all the observed populations among all agents in memory. Each agent has the
same probability of receiving a plantation.
STEP 120 {

DESCRIPTION = "Distribute fruit plantations"

TYPE = distribute_observation_list

AGENTS {

}

OBSERVATIONS #table(fruit_plantations , 0, []) {

fruit #= #table(fruit_plantations , 2, [#this(observation ,

id)])

size #= #table(fruit_plantations , 3, [#this(observation ,

id)])

DEL_count #= #table(fruit_plantations , 4,

[#this(observation , id)])

}

ASSIGN {

#this(observation , fruit) "_plantation" #= #this(observation ,

size)

}

}

(Note: each statement needs to go on one line, line breaks in the example only for readability in this
manual.)

The OBSERVATIONS section of the step generates the list of observations. Between the OBSER-
VATIONS keyword and the open curly bracket, mpmasdist expects a list of observation IDs, which is in
this case simply read from the key column of the fruit_plantations table. Observations have attributes
that are defined in the OBSERVATIONS section in a similar way as agent attributes. The local vari-
able #this(observation, . . .) allows the use of the observation ID or previously defined observation

77

attributes. In our case, we read the information in the further table columns an store them in attributes
named fruit, size and DEL_count. The DEL_count attribute is a reserved attribute that tells mpmasdist
how often an observation with an ID should be distributed.

In the example above, assets with a name formed from the content of the ‘fruit’ attribute of the
observation and the suffix ‘_plantation’ are directly assigned to the asset list of the agent selected by
the distribution algorithm. The number of assets assigned is set according to the size attribute of the
observation.

We could alternatively or additionally manipulate attributes of the selected agent (using anON_ASSIGN
section) or assign household members (using a MEMBERS section).

Exclusiveness and accumulation

The default behavior of the ‘distribute_observation_list’ algorithms assumes that an agent is eligible
only once for assignment of an object with the same observation ID, but that it can receive several
observations in the observation list as long as they have different IDs. So in our example, an agent
could receive only one 12- ha-apple plantation, but it could well receive a 5-ha-apple plantation or a
pear plantation in addition.

This behavior can be changed in both directions. If you assign the attribute ‘DEL_exclusive’ to an
observation and set it to one, an agent that has been selected for an observation cannot be selected
for another observation after that in the same step.

OBSERVATIONS #table(fruit_plantations , 0, []) {

fruit #= #table(fruit_plantations , 2, [#this(observation ,

id)])

size #= #table(fruit_plantations , 3, [#this(observation ,

id)])

DEL_count #= #table(fruit_plantations , 4,

[#this(observation , id)])

DEL_exclusive #= 1

}

(Note: each statement needs to go on one line, line breaks in the example only for readability in this
manual.)

Conversely, if you define the attribute ‘DEL_accumulate’ and set it to one agents may receive several
observations with the same ID. Be aware that any assignment in the ASSIGN or MEMBERS section
is cumulative, i.e. if an agent already has 12 assets of type apple_plantation and additionally receives
5, it will have 17 afterwards. This is different in the ON_ASSIGN section as you do not add asset-
s/members to a list, but manipulate attributes and need to define yourself whether the value is added
to the attribute or replaces the old value. For an addition, you could for example write the following
(make sure that the agent attribute has been defined before):

ON_ASSIGN {

"agent ." #this(observation , fruit) "_plantation" #=

#this(observation , size) + #this(agent , #this(observation ,

fruit) "_plantation")

}

(Note: each statement needs to go on one line, line breaks in the example only for readability in this
manual.)

More complex compatibility relations can be defined using the DYNAMIC_CONSTRAINTS section
explained in more detail in the next section. For example, if we wanted to make sure agents are
assigned only one plantation of each fruit type, we could introduce auxiliary attribute ‘has_<fruit>’ that
is zero in the beginning and set to one as soon as the agent gets an asset of that type. The constraint

78

then makes sure that the agent is not eligible for an observation of a type if the corresponding attribute
has been set to one.

STEP 120 {

DESCRIPTION = "Distribute fruit plantations"

TYPE = distribute_observation_list

AGENTS {

"has_" [apple , pear , kiwi] #= 0

}

OBSERVATIONS #table(fruit_plantations , 0, []) {

fruit #= #table(fruit_plantations , 2, [#this(observation ,

id)])

size #= #table(fruit_plantations , 3, [#this(observation ,

id)])

DEL_count #= #table(fruit_plantations , 4,

[#this(observation , id)])

}

DYNAMIC_CONSTRAINTS {

#this(agent , "has_" #this(observation , fruit)) == 0

}

ASSIGN {

#this(observation , fruit) "_plantation" #= #this(observation ,

size)

}

ON_ASSIGN {

"agent.has_" #this(observation , fruit) #= 1

}

}

(Note: each statement needs to go on one line, line breaks in the example only for readability in this
manual.)

One-sided constraints and distribution order

Often not all agents will be eligible for a certain type of observation and the distribution algorithm
should be subjected to restrictions. mpmasdist distinguishes two types of constraints: FIXED_CONSTRAINTS
are checked only once at the beginning of a distribution, i.e. if they contain any #this(observation, . . .)
variable before the distribution for an observation is started, or if they do not contain observation
specific information even only once at the beginning of the whole step.

For example, if only agents with the sector attribute set to two should be able to receive fruit planta-
tions, the following fixed constraint ensures that only these are included in the list of candidate agents
for an assignment.

FIXED_CONSTRAINTS {

#this(agent , sector) == 2

}

(Note: You can formulate any number of constraints in separate lines. Each line has to evaluate to
true for the set of constraints to be fulfilled.)

DYNAMIC_CONSTRAINTS are checked before each single randomallocation. DYNAMIC_CONSTRAINTS
should only be used if the evaluation result of the condition might change during the distribution pro-
cess, otherwise the repeated evaluation unnecessarily slows down the distribution process.

One example for a dynamic constraint has already been given in the previous section. Another
example is ensuring that the agent does not receive more fruit_plantations than the amount of area it

79

owns. In teh following example the auxiliary agent attribute ‘land_for_fruits’ is introduced and set to
the value contained in the land attribute of the agent in the beginning. Every time the agent receives
a plantation the attribute is reduced by the corresponding amount of area. reduced

STEP 120 {

DESCRIPTION = "Distribute fruit plantations"

TYPE = distribute_observation_list

AGENTS {

land_for_fruits #= #this(agent , land)

}

OBSERVATIONS #table(fruit_plantations , 0, []) {

fruit #= #table(fruit_plantations , 2, [#this(observation ,

id)])

size #= #table(fruit_plantations , 3, [#this(observation ,

id)])

DEL_count #= #table(fruit_plantations , 4,

[#this(observation , id)])

}

DYNAMIC_CONSTRAINTS {

#this(agent , land_for_fruits) >= #this(observation , size)

}

ASSIGN {

#this(observation , fruit) "_plantation" #= #this(observation ,

size)

}

ON_ASSIGN {

"agent.land_for_fruits" #= #this(agent , land_for_fruits) -

#this(observation , size)

}

}

(Note: each statement needs to go on one line, line breaks in the example only for readability in this
manual.)

If you formulate such a constraint, you will want to make sure that the distribution proceeds in a
suitable order, usually starting with the observation that is hardest to distribute. Otherwise the only
agent with enough land to accommodate the 200 ha apple plantation may not be eligible any more at
the time this plantation is distributed, because it already received a 50 ha apple plantation and a 70
ha kiwi plantation.

You can determine the order in which observations will be treated using the special observation at-
tribute ‘DEL_priority’. The lower the value of this attribute the earlier the observation will be distributed
(irrespective of its place in the observation list).

In the example above, it would be a good idea to start with the largest plantations, which could be
achieved by adding the following line to the OBSERVATIONS section.

DEL_priority #= -1 * #this(observation , size)

Complex constraints and matching

While in the presence of a one-sided constrained, ordering observations is usually enough to ensure
that as many observations as possible are distributed, more complex constraint structures require the
use of a matching algorithm, otherwise receiving a suitable allocation by random allocation may be
very unlikely.

mpmasdist offers the ‘match’ type of distribution which currently offers matching algorithms based

80

on the Hungarian method or mixed integer programming (MIP).1 In both cases, all observations are
matched to agents simultaneously, such that an overall likelihood measure is maximized. Likelihoods
have to be defined for the agent for each combination of observation and agent in a special section
called LIKELIHOODS. This section can consists of any number of lines with a label part and a likeli-
hood value part separated by ‘#=’. Each likelihood value part is evaluated and its value is combined
with the likelihood values of other lines by multiplication.

As an example, let us assume that we expect farmers would generally plant around 50% of their
area with fruit plantations and that of course the total fruit plantation area cannot be larger that the
total land area of the agent.

STEP 120 {

DESCRIPTION = "Distribute fruit plantations"

TYPE = match_cdf

MATCHING = match_hungarian

AGENTS {

}

OBSERVATIONS #table(fruit_plantations , 0, []) {

fruit #= #table(fruit_plantations , 2, [#this(observation ,

id)])

size #= #table(fruit_plantations , 3, [#this(observation ,

id)])

OBS_multiply #= #table(fruit_plantations , 4,

[#this(observation , id)])

}

FIXED_CONSTRAINTS {

#this(agent , sector) == 2

}

LIKELIHOODS {

land_restr #= #this(agent , land) >= #this(observation , size)

50perc #= 1 / #abs (0.5 * #this(agent , land) -

#this(observation , size)) + #random_number (0.00001)

}

ASSIGN {

#this(observation , fruit) "_plantation" #= #this(observation ,

size)

}

}

The likelihood part labeled ‘land_restr’ – and due to the multiplication the whole likelihood – is zero
for all agent-observation combinations, in which the plantation is larger than the agent’s land. In all
other cases, the ‘land_restr’ part is one and the overall likelihood is determined by the second part
labeled ‘50perc’, which results from dividing one by the absolute difference between plantation size
and half of the agent land and adding a small random number. This random component ensures that
the algorithm arrives at a unique solution even if two combinations of agent and observation have
the same absolute difference. The magnitude of the random component compared to the difference
quotient determines how important the restriction is.

Some further notes to the above example: In the matching algorithm, each observation ID can be
allocated only once, so the DEL_count attribute cannot be used. Instead, the OBS_multiply attribute
clones the observation as many times as requested giving each clone a separate ID.

While using non-observation specific FIXED_CONSTRAINTS is possible, DYNAMIC_CONSTRAINTS
1MIP is still experimental and not further described here.

81

sections will be ignored in matching algorithms.

A likelihood of zero does not set a hard constraint if the number of observations is smaller or equal
to the number of agents. The algorithm will distribute all observations and if necessary choose a
combination with zero likelihood in case there is no other better option available. To avoid this you
can e.g. include observations of size zero and making sure they have a small positive likelihood.

If the number of observations is larger than the number of agents, the user can use the fieldOBS_NONUSE_PENALTY_ATT
to name an observation attribute that defines the likelihood of an observation not being assigned.
mpmasdist will include artificial non-use agents and assign a non-use penalty equal to the value of
the chosen attribute to the combination of the observation with a non-use agent.

STEP 120 {

DESCRIPTION = "Distribute fruit plantations"

TYPE = match_cdf

MATCHING = match_hungarian

OBS_NONUSE_PENALTY_ATT = nonusepenalty

...

OBSERVATIONS #table(fruit_plantations , 0, []) {

...

nonusepenalty #= 1000000000 + random_number (1000)

...

}

...

}

Internally, the algorithm minimizes negated log-likelihoods, i.e. it transforms the values specified
in LIKELIHOODS by taking logarithms and multiplying with minus one. The penalty is taken as is
and directly corresponds to the negated log-likelihood, i.e. to make non-use a matter of last resort, it
should probably be a very high positive number.2

Remaining observations

If not all observations could be distributed in a ‘distribute_asset_list’ step (e.g. due to unfulfilled con-
straints or less agents than observations with exclusive assignments), mpmasdist will inform the user
printing a message on the screen and add the unassigned observations to a special list. If desired,
the user can then make a second attempt to distribute these observations in a subsequent step, e.g.
relaxing constraints or assigning to a different group of agents.

This is achieved by using the keyword NOTASSIGNED as observation list.

OBSERVATIONS NOTASSIGNED {

}

Alternatively, the list can be stored at the end of a step using STORE_NOTASSIGNED <filename> in
theOUTPUT section, and restored at a later point of time using RESTORE<filename> as observations
list. (Saving in human-readable format is also possible using the NOTASSIGNED <filename> keyword
in the OUTPUT section.)

2Note: By default the algorithm uses a penalty of plus infinity as pseudo-log likelihood for agent-observation combinations
with zero likelihood. This can be adapted assigning a USE_ZEROL_PENALTY field of the distribution step, so allowing a
balancing between non use and violations of zero likelihoods.

82

6.4.2 Assignment following a probability distribution

To assign assets, attributes or household members by Monte Carlo sampling from a distribution func-
tion, mpmasdist offers the ‘assign_by_cdf’ distribution type.

Specification of the distribution function

Probability distribution functions are defined in the OBSERVATIONS section. Each distribution func-
tion is understood as a separate observation, from which each agent receives only one value (so
exclusiveness is ensured by default).

Distribution functions can be specified in the form of frequency distributions, cumulative distribution
functions or quantile functions (= inverse cumulative distribution functions). mpmasdist will internally
transform them into quantile functions for Monte Carlo sampling.

As a frequency distribution The following table with two key columns named fruit_plantations
contains three frequency distributions, one for apple plantations, one for pear plantations one for
kiwis.

crop size quantity
apple 12 2
apple 34 1
apple 5 3
pear 8 1
kiwi 13 1
kiwi 1 10
. . .

The frequency distribution could then be specified as follows:

OBSERVATIONS #table(fruit_plantations , 0, []) {

CDF_ftype #= freq

CDF_freq_for_value_#table(fruit_plantations , 0,

[#this(observation ,id)]) #= #table(fruit_plantations , 3,

[#this(observation ,id), #this(attribute , 1)])

}

(Note: each statement needs to go on one line, line breaks in the example only for readability in this
manual.)

As a cumulative distribution The following table with two key columns named fruit_plantations
contains three cumulative probability distributions, one for apple plantations, one for pear plantations
one for kiwis.

The cumulative distribution could then be specified as follows :

OBSERVATIONS #table(fruit_plantations , 0, []) {

CDF_ftype #= cdf

CDF_bin_for_value_#table(fruit_plantations , 0,

[#this(observation ,id)]) #= #table(fruit_plantations , 3,

[#this(observation ,id), #this(attribute , 1)])

83

crop size cumulative_percentage
apple 0 0
apple 5 50
apple 12 83.33
apple 34 100
pear 0 0
pear 8 100
kiwi 0 0
kiwi 1 91
kiwi 13 100
. . .

}

(Note: each statement needs to go on one line, line breaks in the example only for readability in this
manual.)

As a quantile function The following table with two key columns named fruit_plantations contains
three cumulative probability distributions, one for apple plantations, one for pear plantations one for
kiwis.

crop cumulative_percentage size
apple 0 0
apple 50 5
apple 83.33 12
apple 100 34
pear 0 0
pear 100 8
kiwi 0 0
kiwi 91 1
kiwi 100 13
. . .

The quantile function could then be specified as follows :

OBSERVATIONS #table(fruit_plantations , 0, []) {

CDF_ftype #= cdf

CDF_value_for_bin_#table(fruit_plantations , 0,

[#this(observation ,id)]) #= #table(fruit_plantations , 3,

[#this(observation ,id), #this(attribute , 1)])

}

(Note: each statement needs to go on one line, line breaks in the example only for readability in this
manual.)

Interpolation and discreteness

The distribution function is usually given as an empirical function indicating only a few points on the
function. For sampling, it has to be interpolated. By default, mpmasdist uses linear interpolation (code:
‘linear’). By adding the attribute ‘CDF_interpolation’ to the OBSERVATIONS section, you can choose

84

between stepwise interpolation (code: ‘step’) or cubic Hermite-spline interpolation (code: ‘pmch’).
E.g. for the later:

OBSERVATIONS #table(fruit_plantations , 0, []) {

CDF_interpolation #= pmch

}

If you want to ensure only integer values are assigned also after interpolation, you can add the
CDF_discrete attribute and set it to one.

OBSERVATIONS #table(fruit_plantations , 0, []) {

CDF_discrete #= 1

}

Assignment

The result of the sampling is saved in the local variable #this(observation, CDF_value_assigned),
which can be used to make the assignment, e.g.

...

TYPE = assign_by_cdf

...

OBSERVATIONS #table(fruit_plantations , 0, []) {

CDF_ftype #= cdf

CDF_value_for_bin_#table(fruit_plantations , 0,

[#this(observation ,id)]) #= #table(fruit_plantations , 3,

[#this(observation ,id), #this(attribute , 1)])

fruit #= #this(observation , id)

}

ASSIGN {

#this(observation , fruit) "_plantation" #= #this(observation ,

CDF_value_assigned)

}

...

Constraints

FIXED_CONSTRAINTS and DYNAMIC_CONSTRAINTS can be added to the model in a similar way
as for the ‘distribute_observation_list’ type. The local variables #this(observation, CDF_value_assigned)
can be used to in the constraint formulation to test the drawn value.

E.g.

DYNAMIC_CONSTRAINTS {

#this(agent , land) >= #this(observation , CDF_value_assigned

}

After adding constraints the sampling result will probably not correspond to the original probability
distribution anymore, because the constraints lead to selective truncation of the sampled distribution
for each agent.

To avoid this, you can add the attribute ‘CDF_ensure_full’ to the observation and set it to one.
mpmasdist will then first draw as many values from the distribution as there are agents and then
use the ordered ‘distribute_observation_list’ algorithm to try to distribute all the full range of the dis-
tribution function among the agents. The value of the attribute ‘CDF_ensure_full_sorting’ is used to

85

determine whether the distribution should start with the lowest (if set to -1) or the highest (default or
set to 1) value drawn.

The attribute CDF_priority determines, which observation (i.e. which of several distribution functions)
is used first.

For more complex constraints, the distribution type ‘match_cdf’ combines the assign_by_cdf type
with the ‘match’ distribution type explained above. It samples as many values from a specified distri-
bution function as there are agents and then finds the matching that maximizes the likelihood. The
syntax is similar to the syntax of the ‘match’ type except that the OBSERVATIONS section uses the
syntax for probability distributions explained for ‘assign_by_cdf’.

Drawing only from parts of the distribution function

In some cases, you may want the distribution algorithm to draw only from a part of the distribution
function, e.g. because you used a copula to define a joint distribution function. In this case, you can
add the attributes ‘CDF_part_lb_attribute’ and/or ‘CDF_part_ub_attribute’ to the OBSERVATIONS
section to indicate the name of an agent attribute that contains an lower, respectively upper quantile
of the distribution function between which the agent should be located.

For example, the following code would tell mpmasdist to look for the ‘apple_lb’ and ‘apple_ub’ at-
tributes of the agent, read them, and if they contained for example the values 40, respectively 60, it
would draw a random value from the third quintile of the qunatile function.

OBSERVATIONS [apple] {

CDF_part_lb_attribute = #this(observation , id) "_lb"

CDF_part_ub_attribute = #this(observation , id) "_ub"

}

6.5 Spatial distribution

mpmasdist currently offers two algorithms to create plot maps for MPMAS. The first is a quick version
for cases, where spatial relations are not really important and you just want to create maps in order
to comply with the MPMAS format for representing the soil endowments of agents (as well as cluster,
network etc.). The second one is a more sophisticated distribution algorithm, which use existing land
use maps to allocate farmsteads and plots in a realistic pattern.

6.5.1 Quick maps

For quick maps, mpmasdist offers the distribution type ‘maps_artificial’, which simply fits the plots of
agents into the smallest rectangle possible: It groups all plots of all agent sequentially and breaks them
up into as many rows as required to fit the input into a map of a user-defined North-South extension.

STEP 40 {

DESCRIPTION = "Make artificial property , farmstead and soil maps"

TYPE = maps_artificial

AGENTS {

}

SOILCODES {

black_soil #= 0

clay_soil #= 1

sandy_soil #= 2

}

86

MAPHEIGTH = 10

CELLSIZE = 100

OUTPUT {

FARMSTEADMAP "gis/CatchMap00Farm.txt"

PROPERTYMAP "gis/CatchMap00Prop.txt"

SOILMAP "gis/CatchMap00Soil.txt"

}

}

(Note: each statement needs to go on one line, line breaks in the example only for readability in this
manual.)

The SOILCODES section defines, which attributes of the agents shall be transformed to plots and
by which code these shall be represented in the map. mpmasdist rounds the values contained in the
attributes to full integers. So, for example, an agent, whose ‘black_soil’ attribute contains the value
18.3 would receive 18 cells with code 0 in the map. The MAPHEIGTH field defines the North-South
extension of the map in cells, and the CELLSIZE field defines the sidelegnth of the cell in meters.

The keywords FARMSTEADMAP, PROPERTYMAP, and SOILMAP tell mpmasdist to save the cor-
responding map in the indicated file.

6.5.2 More realistic maps

The more sophisticated distribution algorithm of mpmasdist requires two distribution steps. In the first
step, the farmsteads of the agents are distributed over the map, and in a second step, the plots are
allocated more or less closely around the farmsteads. In both steps, the distribution is based on an
existing suitability map that provides the map extents and whose cell values indicates, which cells are
suitable for farmsteads, respectively certain types of plots.

Distributing farmsteads

The distribution type for distributing farmsteads is ‘maps_assign_farmstead’. It expects only two fields:
The MAP field indicates, which of the maps loaded in the MAPS section of the control file should serve
as the basis for the distribution, and the SUITABLE field that indicates the list of cell values suitable
for farmsteads.

STEP 20 {

DESCRIPTION = "Assign farmsteads"

TYPE = maps_assign_farmstead

AGENTS {

}

MAP = land

SUITABLE = [5, 9]

OUTPUT {

FARMSTEADMAP "/gis/CatchMap00Farm.txt"

}

}

(Note: each statement needs to go on one line, line breaks in the example only for readability in this
manual.)

If a farmstead map already exists in memory from a previous step, it is going to be updated allowing
the user to split farmstead distribution over several steps.

87

An ON_ASSIGN section can be added to update agent attributes when the farmstead is set, e.g.
one could record the soil type at the location of the farmstead using the #mapcell function and the
special agent attributes ‘farm_x’ and ‘farm_y’ from a user-loaded map called ‘soil_in_studyarea’.

ON_ASSIGN {

"agent.soil_at_fstd" #= #mapcell(soil_in_studyarea , #this(agent ,

farm_x), #this(agent , farm_y))

}

Distributing plots

The plot distribution algorithm of mpmasdist is designed to ensure a random distribution of plots to
agents, while taking account of the fact that plots of farmers are usually agglomerated and not com-
pletely randomly distributed over the maps. Plots in reality are usually larger than one grid cell and
mpmasdist tries to form contiguous stretches of land belonging to the same farmer. On the other hand
usually not all land of a farmer forms one contiguous plot, so the algorithms tries to find a balance.
(This reflects the typical central European situation, for other situations an adaptation of the algorithm
should be discussed with the mpmasdist developer team.)

Contrary to the quick algorithm, the more sophisticated algorithm does not transform attributes into
cell values, but looks for suitable cells in an existing suitability map for each type of plot linked to an
agent attribute.

What the algorithm does: The algorithm loops over plot types distributing area of one type first
and then the next, so the following is repeated for each plot type:

1. Reclassify the landscape map into suitable and non-suitable cells according to the specified
condition.

2. Mark all cells containing a farmstead and all those which have already be assigned as property
in previous steps as used.

3. Go through the map and identify polygons, i.e. neighbouring cells which are suitable and un-
used, which could form a plot. Make a list of these polygons, giving them an ID and record their
location (i.e. one handle cell) and size, and make a polygon map, i.e. a map which contains the
IDs of the polygon a specific cell belongs to.

4. Order the agents by a prespecified priority criterion (e.g. start with the largest or smallest farm)
and form a queue with the farm with the highest priority in front

5. Take the first agent from the queue and randomly draw a plot size smaller or equal to the re-
maining area of the current plot type still to be distributed for this agent and smaller than the
largest polygon still available in the map (distribution to be drawn from can be changed by the
user).

6. Look for a suitable polygon of size equal to or larger than the randomly drawn plot size in the
map

• Start at the agents farmstead look at the ring of 8 neighbouring cells to see if any of them
belongs to a polygon large enough. If yes select that polygon and go to 7. If not, look at
the 16 cells around this, and so on making the ring wider and wider

• If after 20 widening iterations a suitable cell has not been found, check if the agent already
has a plot and start the same procedure at a cell of this plot.

• If there is no plot or all plots have already been checked and still there is no suitable polygon,
draw one randomly from the list of polygons (wherever it is in the map)

88

7. Assign the required number of contiguous cells, starting with the cell found, using a random
walk to neighbouring suitable and unused cells. Update the property map to record ownership
of these cells.

8. If after that no cell is left in the polygon, delete the polygon from the polygon list. If cells are left,
check whether the polygon has been split into two polygons. Adapt the polygon size in the list,
and add a new polygon to the list if necessary.

9. If the agent has more area to be distributed, re-append it to the end of the agent queue.

10. The algorithm stops if there is no agent left in the queue, or (with a warning) when no suitable
cells are left in the map.

Implementation in the control file: The mpmasdist distribution type for plot distribution is ‘maps_assign_plots’.
It expects that a farmstead map already exists in memory. This can either be created with the
‘maps_assign_farmstead’ distribution type or loaded from file in the [MAPS] section of the control
file assigning it the reserved name FARMSTEADMAP.

Already existing property maps in memory are updated allowing the user to split plot distribution over
several steps. An existing property map can be loaded from file in the [MAPS] section of the control
file assigning it the reserved name PROPERTYMAP.

STEP 30 {

DESCRIPTION = "Assign_plots"

TYPE = maps_assign_plots

MAP = land

AGENTS {

}

SUITABLE {

black_soil #= [112, 114, 156]

clay_soil #= [202, 297, 231]

sandy_soil #= [14, 34, 89, 70]

}

AVGPLOTSIZE = 10

DISTRIBUTE_ORDER = 1

OUTPUT {

PROPERTYMAP #var(LOCATION)"/gis/" #var(SEED)

"/ CatchMap00Prop.txt"

}

}

(Note: each statement needs to go on one line, line breaks in the example only for readability in this
manual.)

The MAP section indicates the user-loaded suitability map and the SUITABLE section list for each
agent attribute that represents a type of land the cell values indicating suitability for this land type in
the suitability map.

AVGPLOTSIZE controls the tentative number of cells that should be agglomerated to one plot.3 The
optional field DISTRIBUTE_ORDER controls whether the algorithm starts with the agents with largest
(if set to 1, default) – or smallest (if set to 2) value for the plot type to be distributed.

3The plot size is randomly drawn from a probability distribution which has AVGPLOTSIZE as its mean. If the optional field
PLOT_PDF is set to one (default) this distribution is a normal distribution with σ = 2 ∗ AV GPLOTSIZE, if it is two, it is a
uniform distribution.

89

Note: For many agents and large farm sizes, the algorithm can take very long (several days) to
complete the task.

6.5.3 Making population, cluster, network, sector and catchment maps

Once farmstead and property maps have been created mpmasdist can automatically create the other
MPMAS input maps (except soil maps). The distribution type ‘make_secondary_maps_for_mpmas’
requires only the special agent attributes ‘MASPopulation’, ‘MASNetwork’, etc. to be defined for each
agent. The file names for the maps are defined using the corresponding keywords in the OUTPUT
section.

STEP 40 {

DESCRIPTION = "Make other maps for MPMAS"

TYPE = make_secondary_maps_for_mpmas

AGENTS {

MASPopulation #= 0

MASCluster #= #this(agent , cluster)

MASNetwork #= 0

MASSector #= #this(agent , sector)

MASCatchment #= 0

}

OUTPUT {

POPULATIONMAP "/gis/CatchMap00Pop.txt"

CLUSTERMAP "/gis/CatchMap00Clu.txt"

NETWORKMAP "/gis/CatchMap00Netw.txt"

SECTORMAP "/gis/CatchMap00Sector.txt"

CATCHMENTMAP "/gis/CatchMap00Catchment.txt"

}

}

(Note: each statement needs to go on one line, line breaks in the example only for readability in this
manual.)

6.6 Varying agent populations

As mentioned in section 6.1.2, the values of user-defined variables may be overridden when running
mpmasdist by using the command line option --set.

This may be used to generate variations of the agent population for uncertainty analysis, e.g. by
varying the random seed or a constraint.

For example, the following setup would allow to create different distributions of fruit plantations
among the agents by repeatedly running mpmasdist. The setup also makes sure that the output
is saved in different folders named after the seed and that this folder is created if it does not exist.

...

[VARIABLES]

SEEDFRUITS = 2761

outfolder = "out/" #var(SEEDFRUITS) "/"

...

[CONTROL]

MKPATHS = ["out/" #var(SEEDFRUITS) "/"]

90

...

[DISTRIBUTION]

...

STEP 120 {

DESCRIPTION = "Distribute fruit plantations"

TYPE = distribute_observation_list

AGENTS {

}

SEED = #var(SEEDFRUITS)

OBSERVATIONS #table(fruit_plantations , 0, []) {

fruit #= #table(fruit_plantations , 2, [#this(observation ,

id)])

size #= #table(fruit_plantations , 3, [#this(observation ,

id)])

DEL_count #= #table(fruit_plantations , 4,

[#this(observation , id)])

}

ASSIGN {

#this(observation , fruit) "_plantation" #= #this(observation ,

size)

}

OUTPUT {

ASSSIGNMENTS #var(outfolder) "agent_assets.tab "

}

}

(Note: each statement needs to go on one line, line breaks in the example only for readability in this
manual.)

If the setup above was contained in the control file ‘example.dst’, repeated calls to mpmasdist could
look as follows:

mpmasdist example.dst --set "SEEDFRUITS =123"

mpmasdist example.dst --set "SEEDFRUITS =3456"

mpmasdist example.dst --set "SEEDFRUITS =789"

91

Bibliography

Schreinemachers, P. [2006], The (Ir)relevance of the Crop Yield Gap Concept to Food Security in De-
veloping Countries. - With an Application of Multi-Agent Modeling to Farming Systems of Uganda.,
Göttingen.

92

Appendix A

Command line options

A.1 mpmasql

mpmasql {<options >} <control file > {<options >}

Table A.1: Command line options for mpmasql

Option Description
-c, --compact use compact matrix format (only for use

with mqlmatrix)
-h, --help, -? print this help
-n, --nomas do not check for compatibility with MP-

MAS format
-O <directory> override output directory set in .ini

file (for both uncommented and com-
mented files)

-S single matrix mode
-v print version information
-x, --nocomment suppress writing of commented files
-r, --runonly create only run script
--set "<variable>=<value>" change value of .ini variable

Additional output
-a1 report on matrix consistency
-a2 produce files for EDICMatlab routines

Verbosity flags:
-l1 show conversion control settings
-l2 show model configuration
-l3 verbose when reading model structure

file
-l4 verbose when processing scenario

adaptations
-l5 verbose when binding variables and ta-

bles
-l6 verbose when preparing model ele-

ments
-l7 verbose when parsing field and value

definitions

93

-l8 verbose when sorting matrix elements
-l9 verbose when creating input files

Hint: Especially when using verbosity flags and converting many scenarios, mpmasql prints a lot
of text to STDOUT and your shell environment might be flooded with text. You might not be able to
read all text in your terminal, because you are not able to scroll back as far as necessary. To check
all screen messages, you can pipe the output into a file, you can later open with an editor, e.g.

mpmasql <inifile > <flags > > dbg.txt

Under Linux, you can of course also use a pipe to the less or most text pagers:

mpmasql <inifile > <flags > | less

A.2 mqlmatrix

mqlmatrix <name_of_matrix_file > <file format option > <other

options >

Table A.2: Command line options for mqlmatrix

File format:
(specifying one of these formats is obligatory)
-F expect matrix in failed format

(.mip/.mpx)
-S expect matrix in single agent format

(.mtx)
-D expect matrix in debug format

(.mip/.mpx)
-V <subformat> expect matrix in mpmas input file for-

mat (.dat)
<subformat>
0: basic format
1: with second production stage ("harvest

milp")
2: with advanced consumption model
11: TSPC, with second production stage

(not implemented)
12: TSPC, with advanced consumption

model (not implemented)
--compact, -c expect tableau in compact format (only

in combination with -V and -S)

Override default settings:
-A <filename> specify file containing activity descrip-

tion
-C <filename> specify file containing constraint de-

scription
-O <directory> override output directory
-I <directory> specify directory containing description

files (if not specified, the directories are
read frommqlmatrix.conf in the working
directory and names of description files
are guessed from the matrix file name)

94

-M <filename> filename of MilpCheck executable (de-
fault: /usr/local/bin/MilpCheck)

-XP <command> set program for paging (defaults: most
| less)

-XS <command> set spreadsheet program for table
views (defaults: gnumeric | oocalc)

Others:
-p print matrix in single agent format (.mtx)

and exit
-R import solution vector
-h, -?, --help print this help
-v print version information
--risk_aversion <value> set risk aversion coefficient for evalu-

ation of imported quadratic solution to
<value>

A.3 mpmasdist

mpmasdist {<options >} <control file > {<options >}

Table A.3: Command line options for mpmasdist

Option Description
-v print version information
--set "<variable>=<value>" set <variable> defined in the control file

to <value> for this run

A.4 mpmas

Hint: Contrary to the other programs and most other standard Linux applications, there is no space
between the mpmas options and their argument. E.g. its has to be -Ntest_ and not -N test_.

mpmas -N<name_of_scenario_file > <other options >

Table A.4: Command line options for mpmas

Required:
-N is followed without blank by the simulation name

Optional:
-A spatial maps . . . see BasicData (Second sheet)
-C set filename of canal efficiencies (EDIC)
-D save maps for debugging when coupled with external crop model
-E set filename of lambda expectation parameters
-H set water surplus factor (EDIC)
-I is the path to the input folder, which must contain two subfolders

/dat and /gis
-M export agent LP matrices in compressed format (.mpx)
-O is the path to the output folder, which must contain subfolders /out

and /out/test
-P set path to GIS input (overwrites default folder name)

95

-R set digits on the "right" side of decimal point, used for rounding
floating points

-S assign seed value for random events after lottery (integer value)
-T specify specific test runs (see list below)
-U set upper bound (maximum absolute floating point in MILP)
-X set path to xml files
-Y set number of simulation periods (i.e. complete earlier than spec-

ified in input files)
-Z specify name of file for dynamic switches (previously flag -D)

Debugging:
-T1 Write all input files back to /out/test folder
-T2 Print detailed water-related info to screen and file (wAg-files)
-T3 Wait for user input at end of year
-T4 Save expected and actual water-supply data for all agents in pop-

ulation (cannot be used together with T9)
-T5 Save expected and actual water-demand data for all agents in

population (cannot be used together with T9)
-T6 Write agents’ water data to file – if activated in SAVE_AGENT(fstd)
-T7 Save expected and actual yields for all agents in population, be-

fore and after estimating yields of missing crops
-T8 Write all random number that were generated to file in test folder
-T9 Save expected and actual yields for all agents in population (can-

not be used together with T4)
-T10 Allocate water demand spatially
-T11 Save expected and actual prices for all agents in population
-T12 Testing input routine, trace model run
-T13 Exchange maps with external crop model based on files (and not

TDT - "Suppress coupling")
-T14 Write endogenous prices to files
-T15 Basicdata: reading translation table
-T16 Allocate crops to maps but read crop yields from external file

("Look-up table")
-T17 Save agent crop mixes and solution vectors (before and after spa-

tial correction for maps)
-T18 Ignore sub-pixel crops in land-use maps but keep them in produc-

tion solution
-T19 Debug information for exchanging land-use and crop yield look-up

tables
-T20 Raster2D: exporting irrigation table
-T25 Landscape - construction of sectors, landscape, cells
-T28 Outputs for spatial allocation to cells
-T29 De-activate sectors during initialization with special input file (for

use in Mpmas stand-alone)
-T30 For coupling, reads some data with ending "_coupl.dat" instead

of "dat"
-T31 Evaluate Edic - Routing, etc
-T32 Export sector-wise land use data (using InputData class)
-T33 Crop-water module: simple checks for plant water demands, irri-

gation water and water deficits
-T34 Read input data - reading out all Dat and Gis files
-T35 Prints a dot on screen after each 20th agent
-T36 Suppress all outputs
-T37 Medium level of verbosity for OSL messages (-T1 is highest level

of verbosity)
-T38 Used in deactivated Wasim coupling code

96

-T39 Dissecting maps into smaller, sector-wise maps writing sector Gis
to file

-T41 Debug shrinking of maps
-T42 Debug info for land rental market
-T43 Debug info for producer organizations
-T50 Linux debugging - verbose, not recommended
-T51 Edic outputs extended (not recommended)
-T52 Translation of land-use grid / joining into larger map
-T53 Transforming units of inflows from Wasim routing model into MP-

MAS
-T55 Minmax
-T56 Communicate all data
-T57 Table of Etr
-T60 Livestock
-T65 Prints detailed information about the updating of household com-

position at the end of the period onto the screen
-T66 Saving image of livestock list (still under development)
-T67 Write results from water assignment to catchment file
-T68 Save results of asset assignment (detailed log-file of lottery plus

.lt1 and .lt2 files)
-T69 Exogenous land-use scenarios (EDIC calibration run, Land uses

fixed by sector)
-T70 Save agent income data
-T71 Print entries for “Forced Solution” to screen
-T72 Always stop after random assignment
-T73 Stop or continue after random assignment (Waits for user input)
-T74 Stop after first Investment Lp solved
-T75 Stop or continue after first Investment Lp solved (Waits for user

input)
-T76 Stop after first Production Lp solved
-T77 Stop or continue after first Production Lp solved (Waits for user

input)
-T78 Save all MILP as MPS files
-T79 Write agent objective values in Investment and Production LPs

into files
-T80 Do wasim control (Read external land-use maps and irrigation key

file) and quit then
-T81 Suppress initialization of Wasim coupling water constraints and

expectations set to 9999 (not constraining)
-T82 Print header lines to MP-MAS output files
-T88 Test consistency of maps (Chile hard-coded)
-T89 Create sector maps according to inflowIDs of ActWaterRights

(Ghana hard-coded)
-T90 Catch segmentation faults in OSL when in solving mode 4 (only

for Linux)
-T91 Save updated ’original’ LP matrix for producer organizations
-T92 Save updated ’original’ LP matrix for farm household and other

farm agents
-T93 Suppress saving pre-loaded MILPs after failure
-T94 Suppress saving OSL-loaded MILPs after failure
-T98 Reads LP input file ignoring text (not sure if this really works)
-T99 Interrupts model run and waits for user input

Note: A useful set of flags to debug input files is: -T1 -T34; sometimes -T99 might be of help. Note
that -T1 writes all input dat files to the /out/test folder as tst files (very useful when checking what the

97

program actually reads from files).

98

Appendix B

mpmasql file reference

This chapter gives an overview of the structure and a reference of all possible entries in the mpmasql

control and model design files.

Comments In all of the files, a line starting with an apostrophe (’) is ignored and can be used for
comments. You can also stretch comments over several lines with block comments. Block comments
start with /* and end with */.

' this is a comment line and will be ignored by mpmasql

/*

This is also a comment , which

spans over several lines

*/

MFL expressions At many locations in the files, you can use mpmasql function language (MFL) to
write expressions to specify that a certain value depends on another value, e.g. the scenario, the
specific instance of a class or another variable. The reference of all available MFL functions and
operators is given in chapter C.

B.1 Control file

The control file contains settings that instruct mpmasql which model design and data sources to use
to build the model, where to write and how to name the output, and which scenarios to create. It
contains a number of entries of the form:

<control parameter > = <scalar/list: MFL expression >

The SCENDEF, RHSDEF, SCENLIST, RHSLIST and RHS_SOILTAB entries are special, because
they expect a table definition.

tablename = (tabletype) { tablesource:

an SQL statement for type sql ,

a filename for type ascii ,

or a comma separated list for type list

}

99

All of the tables can be of type sql or ascii. SCENLIST and RHSLIST can also be of type list.
For RHSDEF you can specify a type transform_assets with empty curly brackets, indicating that
you want right hand sides to be automatically created from the ASSET_ENDOWMENT, HOUSE-
HOLD_COMPOSITION and RHS_SOILTAB tables.

Apart from the predefined control parameters listed in table B.1, you can also define own user vari-
ables (with the same syntax), which can be used inMFL expressions defining the tables for SCENDEF,
SCENLIST, RHSDEF and RHSLIST using the #var() function. All control parameters and user vari-
ables of the .ini file can be overwritten at program call using the --set flag (see section A.1). In this
way you can generate various scenario sets using a single .ini file.

Table B.1: Parameters in the control file

Entry
[INPUT] optional Section heading
CONFIGURATION required Name and path of the configuration file

(e.g.: tutorial.cfg)
STRUCTURE required Name and path of the structure file

(e.g.: tutorial.cll)
DATA required Name and path of the data file (e.g. tu-

torial.var)
DBTYPE required Type of the database, or more specif-

ically of the perl DBD to be used (e.g.
mysql).

DB required Name of the database
to connect to (e.g.: mp-
masql_example_db:localhost)

DBUSER required Username for the database
DBPWD optional Password for the database

[OUTPUT] optional Section heading
OUTDIR optional directory the input files shall be written

to (ending with a / under Linux). By
default testoutput/ is used.

OUTDIR_CM optional directory the commented input files
shall be written to (ending with a / under
Linux). By default testoutput/ is used.

OUTDIR_S optional directory where standalone matrices
shall be written to (ending with a / under
Linux). By default testoutput/ is used.

OUTDIR_S_CM optional directory where the commented stan-
dalone matrices shall be written to
(ending with a /). By default testoutput/
is used.

[RUN SCRIPT] optional section heading
RUNSCRIPTDIR optional directory where MP-MAS invocation

scripts should be written to
EXEC optional path and name of the MP-MAS exe-

cutable to be used (default: mpmas,
i.e. the standard executable that has
been installed into /usr/local/bin/ when
installing/updating mpmasql.)

100

RUNINDIR optional value for the -I flag of MP-MAS
RUNOUTDIR optional value for the -O flag of MP-MAS
RUNTDTDIR optional value for the -X flag of MP-MAS
RUNCNLDIR optional Directory where EDIC canal files are

written
FLAGS optional other flags for MP-MAS

[SCENARIOS] optional section heading
PREFIX required A prefix for all MP-MAS input file names

for all scenarios (Note: required entry,
but assignment of empty value is pos-
sible)

SCENLIST optional list of scenarios the conversion script
has to convert input files for

SCENDEF optional table with scenario definitions

[RHS] optional section heading
RHSLIST optional list of RHS scenarios for single matrix

mode
RHSDEF optional table with RHS scenario definitions for

single matrix mode
RHS_SOILTAB optional table with soil information if RHSDEF

(transform_assets) is used
RHS_MAPDIR optional directory with MP-MAS input maps if

RHSDEF (transform_assets) is used

[DEBUG] optional section heading
SKIP optional list of input files to be skipped
DBGMILPS optional list of agents, for which debugging

MILPs shall be saved by MP-MAS

[MASPIPE] optional section heading
MASPIPESERVER optional LUEGroup Simulation Server to use for

remote simulation
MASPIPEUSER optional LUE Group Simserv User for remote

simulation
MASPIPEEXEC optional LUE Group Simserv Executable identi-

fier for remote simulation
MASPIPEVERSION optional Model Version Identifier for remote sim-

ulation

[STATA SCRIPT] optional section heading
STATA_ROOT optional root directory for stata scripts (Default

./)
STATA_MEM optional argument for ‘set mem’ command in

stata script (Default: 1000M)
STATA_MAXVAR optional argument for ‘set maxvar’ command in

stata script (Default: 5000)
STATA_MPMASOUT optional directory where MPMAS output is lo-

cated (Default: RUNOUTDIR/out/)
STATA_MPMASLAB optional directory where labeling and group

variable files are located (Default:
RUNINDIR/input/dat/)

[R SCRIPT] optional section heading
R_ROOT optional root directory for R scripts (Default ./)

101

R_MPMASOUT optional directory where MPMAS output is lo-
cated (Default: RUNOUTDIR/out/)

R_MPMASLAB optional directory where labeling and group
variable files are located (Default:
RUNINDIR/input/dat/)

R_TO_WORKSPACE optional whether data frames shall be kept in the
workspace for each scenario (0/1, de-
fault: 0)

R_TO_TAB optional whether data frames shall be exported
as tab-separated text files (0/1, default:
1)

R_ALL optional whether all raw output shall be kept/ex-
ported (0/1, default: 0)

R_JOIN_RAW optional whether a combined data frame of raw
output (incl. performance, rhs, lhs and
solution shall be generated) (0/1, de-
fault: 1)

R_NO_USERVARS optional omits generation of data.frame with ag-
gregated columns according to user-
defined resultgroups (0/1, default: 0)

R_NO_USERSET optional omits generation of a combined
data.frame of aggregated columns
according to user-defined resultgroups
(0/1, default: 0)

R_FILTER optional list of variables to be used to create a
subset of the combined data.frame of
user variables

B.2 Model configuration

The model configuration controls the general setup of the MP-MAS model. It contains section head-
ings and entries. Section headings are used to improve readability, but do not have any specific
function. You are free to choose your own.

<configuration parameter > = <scalar/list: MFL expression >

Entries in the configuration file can be assigned scalar values and lists and mpmasql function lan-
guage expressions can be used to do so. These expressions may refer to variables in the [GLOBALS]
section of the data file, not to [USER VARIABLES] . Local variables are not defined.

The following entries are defined:

Table B.2: Entries in the model configuration file

Field Description Required Default
[TIME]
STARTYEAR Start year of simulation (integer) required -
ENDYEAR End year of simulation (integer) required -
STARTMONTH Start month of simulation (integer) required -
ENDMONTH End month of simulation (integer) required -
STARTDAY Start day of simulation (integer) required -
ENDDAY End day of simulation (integer) required -
SEASONSTART Start month of the cropping season (in-

teger)
required -

102

SEASONEND Last month of cropping season (inte-
ger)

required -

IRRIGMONTH Number of irrigation months (integer) optional 0
NORTHERN Is the model location on the Northern

Hemisphere (0-1)
optional 1

SPINUPS Number of phasing in periods (integer) optional 0

[LANDSCAPE]
MAPS directory with input maps (relative to in-

put/)
optional gis/

NSOIL number of soil types(integer) required -
CELLSIZE Size of gridcell in the map (number) optional 1

[FINANCIAL]
CURRENCYSCALE if the currency is given in a different unit

than 1, e.g. in 10,000 CHP. Influences
the precision of calculations

optional 1

[AGENTS]
POPULATIONS Number of agent populations (integer) optional 1
CLUSTERS Number of clusters within each popula-

tion (integer)
optional 1

AGENT_INFO_FROM_MAPSWhether an explicit AGENT_INFO ta-
ble is given, or whether the correspond-
ing information should be read from the
maps

optional 0

[ASSETS]
ASSETDISTTYPE Initial allocation of assets (0: random

assignment byMP-MAS, 1: supplied by
user)

optional 1

LOTTERYLOOPS Number of lottery loops optional 30
NFARMASSETS Tentative number of farm assets (inte-

ger)
optional 10

SAFEROUND Safe rounding factor for indivisible as-
sets

optional 1

MINPERM Minimum investment size, amounts
smaller than this will not change the en-
dowment of the agent

optional .1

MINWATER Minimum share of plant water demand
that has to be fulfilled for assignment of
irrigated perennials in the lottery (frac-
tion)

optional 1

[CONSUMPTION]
HHNUTRIENTS List of household nutrients required for

advanced
consumption
model

-

[SUBMODELS]
CONSTYPE Type of consumption model (0: simple,

1: advanced)
optional 0

CROP_MODEL Type of crop growth model (0: none, 1:
TSPC, 2: CropWat, 3: External)

optional 0

103

BIOVERSION Version of biophysical model (0: stan-
dard; 1: CropWat Chile; 2: CropWat
with flood factor; 3: External yields from
lookup table; 4: External with internal
coupling in memory)

optional 0

EXTERNAL_CROP_MODELIf and which link files for an exter-
nal crop growth model are to be cre-
ated by mpmasql (currently available:
EXPERT-N).

optional -1

XNDBGFILES Whether debug yield and crop activity
id files are to be created

optional 0

LANDSCAPE_MODEL Type of landscape model (0: none, 1:
EDIC, 2: ,3: External)

optional 0

IRRIGATION Use irrigation (with landscape model 1,
1

optional 0

LANDMARKET_MODEL Turn on land market model (0: No
land transfers, 1: Land to "Other Farm
Agent", 2: Rental market, 3: Long term
market)

optional 0

PERMCROP_MODEL Use permanent crops optional 0
POLICY Simple infrastructure subsidy policy

model
optional 0

COUNTRY Activate certain study specificmodifica-
tions

optional 0

HARVEST_DECISION Re-run production decision with up-
dated yields and fixed land area after
crop growth model results

optional 0

DEMOGRAPHY_MODELType of demography model : 0 - ba-
sic demography model, 1- advanced
demography model (currently, only for
COUNTRY = 5)

optional 0

[DIFFUSION]
NETWORKS Number of Innovation Networks (inte-

ger)
required -

COMTYPE Type of communication optional 2
CUMADOPT Type of diffusion model optional 1
THRESHOLDS list of fractions that denote the lower

bound of innovation segments
optional [0]

[HYDROLOGY]
NINFLOWS Number of inflows optional 0
VINFLOWS Values supplied per inflow (set to 2 if

EDIC is used)
optional 0

[CROP GROWTH
XNSEASONS External crop growth models: Number

of cropping seasons per year
optional 1

[DYNAMICS]
OFFLIQEQ Switch off updating of liquidity and eq-

uity (0-1)
optional 0

OFFHHAGING Switch off aging of households (0-1) optional 0
OFFLIVEAGE Switch off aging of livestock (0-1) optional 0
OFFASSAGE Switch off aging of assets (0-1) optional 0

104

OFFINV Switch off investments (0-1) optional 0
OFFINVDELAY Delay turning off investments by x peri-

ods
optional -1

OFFDYNSOIL Switch off soil dynamics (0-1) optional 1
OFFDYNFLOW Switch off dynamic inflows (0-1) optional 1

[SOLVER]
MINOBJ Minimum objective value (MP-MAS is-

sues a warning if an agent obtains an
objective value lower than this

optional 0

OSL_MAXSOLVETIME Maximum solving time optional 5.5
OSL_MAXITERATE Maximum number of iterations optional 999 999 999
OSL_MAXNODES Maximum number of nodes optional 99 999 999
OSL_SEQUENCE OSL sequencing (0-4): 0: start in mode

1; 1 or 2: start in mode 2; 3: start in
mode 3; 4: start in mode 4

optional 0

OSL_M4_ATTEMPTS number of attempts in mode 4 optional 2
OSL_M4_ITHRESH Mode 4: max. number of integers for

first attempt
optional -1

OSL_M4_NTHRESH Mode 4: max. number of nodes pro-
cessed in all but last attempts

optional -1

OSL_M4_STHRESH Mode 4: max. number of solutions to
be found in all but last attempts

optional -1

OSL_M4-
_LP_PRESOLVE

Mode 4: first attempt to use LP presolv-
ing

optional 1

OSL_M4_LP-
_PRESOLVE_ONFAIL

Mode 4: use LP presolving if previous
attempt failed

optional 1

OSL_M4_SCALE Mode 4: first attempt to use scaling optional 1
OSL_M4_SCALE-
_ONFAIL

Mode 4: use scaling if previous attempt
failed

optional 1

OSL_M4_CRASH Mode 4: first attempt to use crashing optional 1
OSL_M4_CRASH-
_ONFAIL

Mode 4: use crashing if previous at-
tempt failed

optional 1

OSL_M4-
_CRASHMODE

Mode 4: crash mode (1-4); 1: dual fea-
sibility may not be maintained; 2: dual
feasibility is maintained, if possible, by
not pivoting in variables that are in the
objective function; 3: dual feasibility
may not be maintained, but the sum of
the infeasibilities will never increase; 4:
dual feasibility is maintained, if possi-
ble, by not pivoting in variables that are
in the objective function. In addition,
the sum of the infeasibilities will never
increase.

optional 1

OSL_M4-
_I_PRESOLVE

Mode 4: first attempt to use LP presolv-
ing

optional 2

OSL_M4-
_I_PRESOLVE-
_ONFAIL

Mode 4: use MIP presolving if previous
attempt failed

optional 1

OSL_M4-
_I_STRATEGY

Mode 4: Strategy for MIP solving and
presolving

optional 1

OSL_M4-
_I_HEURPASS

Mode 4: number of heuristic passes in
MIP solving/presolving

optional 1

105

OSL_M4_ACCEPT-
_DIFF

Mode 4: accept attempt if absolute dif-
ference to best estimated solution is
smaller than this

optional 0

OSL_M4_ACCEPT-
_RELDIFF

Mode 4: accept attempt if relative dif-
ference to best estimated solution is
smaller than this

optional 0

OSL_M4_CONT-
_ONFAIL

Mode 4: continue after failed attempt
(yes/no)

optional 1

OSL_M4_MODE3-
_ONFAIL

Mode 4: continue in mode 3 if all at-
tempts failed (yes/no)

optional 0

OSL_M4_I_PRE-
_ADDROWS

Mode 4: max. number of rows to be
added for integer presolving

optional 0

OSL_M4_LOG Mode 4: log solving process optional 0

[SHADOW PRICE CALCULATION]
SHDW_SWITCH Activate calculation of shadow prices

for every agent (0-1)
optional 0

SHDW_LPMODE Shadow prices for production or invest-
ment LP (production or investment)

optional -

SHDW_FIRST Identifier of first constraint for which
shadow prices are to be calculated

optional -

SHDW_NUM Number of constraints for which
shadow prices are to be calculated

optional -

B.3 Model data file

The data file has six sections:

[GLOBALS] Here you can define global variables and lists, which you can use in mpmasql function
language expressions in all of the model design files (except in other globals defined above a
specific global).

[MPMAS PARAMETERS] In this section, parameters for the dynamics of the MP-MAS model and its
submodules are set. You can use mpmasql function language to do so, referring only to global
variables.

[MPMAS TABLES] In this section, you specify database queries for MP-MAS parameters or exoge-
nous variables expected by mpmasql in a pre-defined table format. You can use mpmasql function
language to do so, referring only to global variables.

[USER TABLES] In this section, you can define your own tables and the database queries to fill
them, which you can then refer to in the definition of the model structure (.cll), the user variables
and the instance lists. You can use mpmasql function language to define the database queries,
referring only to global variables, configuration entries, and MP-MAS parameters.

[USER VARIABLES] In this section, you can define and set your own variables and lists, which you
can then refer to in the definition of the model structure (.cll) and the instance lists. You can use
mpmasql function language to set variable values, referring to global variables, configuration
entries, MP-MAS parameters and user defined tables.

[INSTANCES] Here you provide the lists of class instances, to fill your model structure with data.
You can use mpmasql function language to set variable values, referring to global variables,
configuration entries, MP-MAS parameters, user defined tables and user defined variables.

106

B.3.1 [GLOBALS]

Globals are variables that you can refer to anywhere else in the model design files, i.e. in the model
configuration, the model data file and the model structure. The only place where you cannot refer to
them, is in global definitions that come before the one in which they are defined. Their main use is to
implement scenarios that change MPMAS parameters or table queries.

The definition syntax is simple:

<globalname > = <value or list: MFL expression >

and you refer to them later by using #var() for scalar variables, respectively #foreach(), #list or
#qlist for list variables.

Examples:

FIRSTYEAR = 2000

LASTYEAR = 2010

YEARS = #steps (#var(FIRSTYEAR), #var(LASTYEAR) ,1)

EQSH = .25

B.3.2 [MPMAS PARAMETERS]

In the MPMAS PARAMETERS section, you supply values for scalar parameters for the dynamics of
the MP-MAS model and its submodules.

The definition syntax is similar to the definition of configuration entries or globals:

<parametername > = <value or list: MFL expression >

MFL expressions can refer to global variables only. Examples:

LIQUIDITY = 10000

EQSHARE = #var(EQSH)

LEVERAGE = (1 - #var(EQSH)) / #var(EQSH)

The following table lists all defined MPMAS parameters:

Table B.3: MPMAS parameters

Field Description Required Default

ASSETMAXAGE Maximum age of assets at simulation
start (integer)

optional 7

ASSETMINAGE Minimum age of assets at simulation
start (integer)

optional 1

DURPOLICY Policy model: Duration of policy mea-
sure (integer)

optional 0

EFFRAIN _TYPE CropWat Model: Effective rainfall
(USDA: USDA formula, Regression:
regression approximation)

optional USDA

EFFRAIN_CONST CropWat Model: Effective rainfall, Con-
stant for Regression

optional 1.3E+00

EFFRAIN_CWR CropWat Model: Effective rainfall, Co-
efficent of CWR for Regression

optional -3.5E-02

107

EFFRAIN_CWR2 CropWat Model: Effective rainfall, Co-
efficent of CWR squared for Regres-
sion

optional 1.7E-04

EFFRAIN_PREC CropWat Model: Effective rainfall, Co-
efficent of PREC for Regression

optional 6.4E-01

EFFRAIN_PREC2 CropWat Model: Effective rainfall, Co-
efficent of PREC squared for Regres-
sion

optional -4.8E-04

EFFRAIN_CWRPREC CropWat Model: Effective rainfall, Co-
efficient of the interaction term of PREC
and CWR for Regression

optional 1.0E-03

EQSHARE Minimum share of equity financing for
investments (default value, can be
overridden by segment specific values
in SEGINFO and by asset-specific val-
ues in the model structure file)

optional 1

EXPECTATIONS Type of expectations (0:constant,
1:naive, 2:adaptive, 3: foresight),
(default value, can be overridden by
agent specific values)

optional 0

INCTRANS Income transfer (migration submodel)
(default value, can be overridden by
segment specific values in SEGINFO)

optional 0

INTEREST_LGCRD Interest rate on long-term credits (de-
fault value, can be overridden by seg-
ment specific values in SEGINFO)

required -

INTEREST_SHCRD Interest rate on short-term credits (de-
fault value, can be overridden by seg-
ment specific values in SEGINFO)

required -

INTEREST_SHDEP Interest rate on short-term deposits
(default value, can be overridden by
segment specific values in SEGINFO)

required -

INVESTMENT
_HORIZON_AFFECT
_LIFETIME

Advanced demography with invest-
ment horizon: If set to one, this con-
straint makes the agent use his ex-
pected remaining household lifetime to
calculate investment costs of new as-
sets, whenever it is smaller than the
lifetime of the asset. (Note: currently
not yet implemented for perennial crops
and livestock.)E.g if a an asset has a
lifetime of 8 years, but the lifetime is ex-
pected to remain in farming only 5 years
more, the annuity would be calculated
based on 5 instead of 8 years.

optional 0

108

INVESTMENT
_HORIZON_MODEL

Advanced demography model: Turn on
investment horizon model If set to one,
this allows you to make investment be-
havior depend on the expected remain-
ing lifetime of the household, using the
corresponding parameters

optional 0

INVESTMENT
_HORIZON
_PTHRESHOLD

Advanced demography with invest-
ment horizon: MPMAS will go through
the retirement probabilities of each rel-
evant household member (who these
are is determined by the INVESTMENT
_HORIZON _WHO setting). The age
where the retirement probability first
surpasses the value given here is iden-
tified as the probable end of household
lifetime. Expected remaining house-
hold lifetime if this member is then cal-
culated by subtracting the current age
of the household member from this
age. The actual expected remaining
household lifetime is the maximum one
found among all relevant household
members

optional 2

INVESTMENT
_HORIZON_WHO

Advanced demography with invest-
ment horizon: This indicates who is
considered relevant for the remaining
household lifetime: 0 - only the cur-
rent household head; 1 - the current
household head and the household
member who would become household
head if the current household head re-
tired today; 2 - as in 1, plus a po-
tential future household head, which is
not old enough to become household
head today, but will become available
as household head before the current
one needs to retire.

optional 0

LEVERAGE Leverage at the start of the simulation
(1 - EQSHARE) / EQSHARE (default
value, can be overridden by agent spe-
cific values)

optional 0

LIQRESERVE Liquidity Reserve: percentage of ex-
pected end-of-year cash demand that
is not entered into the MILP (fraction)

optional 0

LIQUIDITY Liquidity at the start of the simulation
(default value, can be overridden by
agent specific values)

optional 0

LMMINBIDREL Land market: Minimum bid (relative to
average shadow prices)

0.2

LMMINBIDABS Land market: Minimum bid (absolute
value)

20

109

LMMAXBIDREL Land market: Maximum bid (relative to
average shadow prices)

2

LMMAXBIDABS Land market: Maximum bid (absolute
value)

2000

LMMKUPOUT Land market: Markup for renting-out
decisions

1.3

LMMKUPIN Land market: Markup factor for renting-
in decisions

0.7

LMTRYOUT Land market: Number of renting-out at-
tempts

3

LMTRYIN Land market: Number of renting-in at-
tempts

6

LMMAXDIST Land market: Maximum distance for
placing bid in grid cells)

30

LMDURATION Land market: Duration of rental con-
tract (years)

1

LMSHPAYEND Land market: Share of rental payment
paid after harvest

0.0

MAXAGEPERM Policy model: Maximum age of subsi-
dized permanent crops (integer)

optional 0

MIGRATIONPULL Migration pull factor (default value, can
be overridden by segment specific val-
ues in SEGINFO)

optional 0

OPPWAGE Opportunity wage of the household
head (default value, can be overrid-
den by segment specific values in
SEGINFO)

optional 0

OVERLAP Overlap of network thresholds optional 1

PAREX Parameter for adaptive expectations,
see Brandes et al. (1997: 382)

optional 0.5

RESELL Share of acquisition cost that can be re-
covered when reselling the investment
(default value, can be overridden by
segment specific values in SEGINFO)

optional 0

SCONEXTRA Simple consumption model: Extra con-
sumption percentage if income sur-
passes minimum consumption (frac-
tion)

required -

SCONMIN Simple consumption model: Minimum
consumption: money that is consumed
at least if the liquid means suffice (num-
ber)

required -

SCONRED Simple consumption model: Essential
share of minimum consumption that
has to be maintained even if liquidity
does not suffice (fraction)

required -

110

SUCCESSION_AD
_MINCONS_FACTOR

Advanced demography model: share
of household minimum consumption to
be covered for succession at death

optional -9999

SUCCESSION_AD
_MINIMUM_PROFIT

Advanced demography model: mini-
mum income to be reached for succes-
sion at death

optional -999999999

SUCCESSION_AD
_DECI-
SION_ACTIVITY

Advanced demographymodel: index of
a MILP activity, whose solution value
needs to be larger than zero, for suc-
cession at death to occur

optional -

SUCCESSION_VR
_MINCONS_FACTOR

Advanced demography model: share
of household minimum consumption to
be covered for voluntary retirement and
succession

optional -9999

SUCCESSION_VR
_MINIMUM_PROFIT

Advanced demography model: mini-
mum income to be reached for volun-
tary retirement with succession

optional -999999999

SUCCESSION_VR
_DECI-
SION_ACTIVITY

Advanced demographymodel: index of
a MILP activity, whose solution value
needs to be larger than zero, for volun-
tary retirement and succession to occur

optional -

SUCCESSION_VR
_MINIMUM_RENTAL

not used yet optional 0

SUCCESSION_OR
_MINCONS_FACTOR

Advanced demography model: share
of household minimum consumption to
be covered for succession after obliga-
tory retirement

optional -9999

SUCCESSION_OR
_MINIMUM_PROFIT

Advanced demography model: mini-
mum income to be reached for succes-
sion after obligatory retirement

optional -999999999

SUCCESSION_OR
_DECI-
SION_ACTIVITY

Advanced demographymodel: index of
a MILP activity, whose solution value
needs to be larger than zero, for suc-
cession after obligatory retirement to
occur

optional -

TCOST Transport cost for one gridcell (number)
(for land markets)

optional 0

XC_SAV_INCSEGS Advanced consumption model: List
with the width of the income segments
(except first) of the savings function

required for
advanced
consumption

-

XC_SAV_COEF_INC Advanced consumption model: Esti-
mated coefficient of income in the sav-
ings function

required for
advanced
consumption

-

XC_SAV_COEF_INC2 Advanced consumption model: Esti-
mated coefficient of squared income in
the savings function

required for
advanced
consumption

-

XC_SAV_COEF_HH Advanced consumption model: Esti-
mated coefficient of household in the
savings function

required for
advanced
consumption

-

111

XC_SAV_COEF_CONSTAdvanced consumption model: Esti-
mated constant in the savings function

required for
advanced
consumption

-

XC_FNF_COEF_CONSTAdvanced consumption model: Esti-
mated constant in the food-non-food
expenditure function

required for
advanced
consumption

-

XC_FNF_COEF_EXP Advanced consumption model: Esti-
mated coefficient of total expenditure in
the food/non-food expenditure function

required for
advanced
consumption

-

XC_FNF_COEF_HH Advanced consumption model: Esti-
mated coefficient of total expenditure in
the food/non-food expenditure function

required for
advanced
consumption

-

XC_FNF_EXPSEGS Advanced consumption model: List
with the width of the total expenditure
segments in the food/non-food expen-
diture function

required for
advanced
consumption

-

XC_FOO_FEXSEGS Advanced consumption model: List
with the width of the food expenditure
segments in the food category expen-
diture function

required for
advanced
consumption

-

B.3.3 [MPMAS TABLES]

In the MPMAS TABLES section, you specify the data sources for all tables that have a fixed format
required by mpmasql. The syntax for MPMAS table definitions is

tablename = (tabletype) { tablesource: MFL expression that can

span several lines

}

The table type can be either sql or ascii. For tables of types sql, the expression in the curly brackets
should result in an SQL SELECT statement that is being send to the database specified in the control
file and results in a table of the required format. E.g.

ASSET_ENDOWMENTS = (sql) { "SELECT farmstead_id , asset , quantity

FROM example_db.tbl_assets

WHERE scenario = " ~ #var(ASSETSCEN)

}

For tables of type ascii, the expression in the curly brackets should result in a filename of a text file
with values in tab-separated format (experimental). E.g.

ASSET_ENDOWMENTS = (ascii) { "data/assets.txt" }

List of MPMAS data tables

Table B.4: MPMAS data tables

Field Description Required Default

112

AGENT_INFO Table that contains agent
info like internal MP-MAS
agent_id, cluster, population
etc. from each agent

required
if ASSET-
DISTTYPE
= 1 and not
AGENTINFO_FROM_MAPS
= 1

-

ASSET_CDF Table that lists cumulative
distribution functions for as-
sets for each cluster

required if
ASSETDIST-
TYPE = 0

-

ASSET_ ENDOWMENTS Table that lists asset endow-
ments for each household

required if
ASSETDIST-
TYPE = 1

-

CROPWAT_PRECIPEXPECT CropWat Model: Table with
initially expected monthly
precipitation for each sector

required -

CROPWAT_PRECIPACTUAL CropWat Model: Table with
actual monthly precipitation
for each sector and simula-
tion year

required -

CROPWAT_EVAPOEXPECT CropWat Model: Table with
initially expected potential
reference evapotranspiration
for each sector

required -

CROPWAT_EVAPOACTUAL CropWat Model: Table with
actual monthly potential ref-
erence evapotranspiration for
each sector and simulation
year

required -

EDICROUTING EDIC Model: Table with sur-
face and subsurface routing
coefficients between sectors

required -

EDICINFLOWEXPECT EDIC Model: Table with ex-
pected monthly river flows

required -

EDICINFLOWACTUAL EDIC Model: Table with ac-
tual monthly river flows for ev-
ery simulation year

required -

EDICAGENTRIGHTS EDIC Model: Table with wa-
ter rights of agents as a share
of sector share of inflow

required -

EDICSECTORRIGHTS EDIC Model: Table with sec-
tor shares of rights to each in-
flows

required -

EDICIRRIGMETHODS EDIC Model: Table with
efficiency characteristics for
each irrigation method

required -

FIXCOSTS Table of fix costs the agent
have to face (additional to
debt service for assets and
depreciation), cluster specific

optional 0

113

HOUSEHOLD_CDF Table that specifies the
household composition
in terms of sex and age
categories and population
as cumulative distribution
function for each cluster

required if
ASSETDIST-
TYPE = 0

-

HOUSEHOLD_COMPOSITION Table that specifies the
household composition in
terms of household member
categories and population for
each household

required if
ASSETDIST-
TYPE = 1

-

HOUSEHOLD_DYNAMICS Table specifying characteris-
tics of population members at
different ages (career)

required -

HOUSEHOLD_MEMBER_TYPES Table that defines the
household member cat-
egories used in HOUSE-
HOLD_COMPOSITION or
HOUSEHOLD_CDF (table)

required -

HOUSEHOLD_SWITCHING Advanced demography
model: Table indicating the
probability that the part-
ner/descendant of a person
of career X gets career Y,
respectively the probability
of a household member of
career X to switch to career
Y if certain events occur

optional -

INFPROJ Policy model: Table describ-
ing the characteristics of in-
frastructure projects

optional 0

INFPROJPARTICIPANTS Policy model: Table listing
farmstead_ids of participants
of infrastructure projects

optional -

INNOVATIONS Table specifying the availabil-
ity of innovations to innova-
tion segments

optional -

INVESTMENT_HORIZON Table to override any
of the global INVEST-
MENT_HORIZON_. . .MPMAS
parameters with population
specific settings

optionl -

114

INVESTMENT_HORIZON-
_CONSTRAINTS

Advanced demography
model with investment hori-
zon: Table listing constraints
which allow to directly in-
fluence the LP decisions of
the household depending on
expected household lifetime.
You can define as many
constraints as you like, by
indicating the corresponding
LP row, a minimum age
and a right hand side value
to insert if the household
falls into the category. This
right hand side value is then
inserted into the constraint
representing the current
remaining expected lifetime
of the household. The re-
spective constraint is the
one, whose minimum life-
time is surpassed, while the
minimum lifetime of the next
following constraint is not
surpassed.

optional -

PRODUCER_ORGANIZATIONS List producer organizations
and links them to the files
containing their decision
problem

optional -

PRODUCER_ORGANIZATION-
_SERVICES

describes the links between
farm agent activities and de-
cision problem of producer
organizations

optional -

REGION a table describing the sectors
of the model

required -

SEEDS Table that lists a seed for
each sector to initialize the
random distribution of assets
and household members (ta-
ble)

required -

SEGBOUNDS Table containing segment-
specific restrictions on peren-
nial investments to avoid over
investment and bankruptcy
due to gestation periods

optional -

SEGINFO Table providing segment-
specific financial variables

optional -

SUCCESSION_CONTROL Table to override any
of the global SUCCES-
SION_CONTROL_. . .MPMAS
parameters with population
specific settings

optional -

115

Description of table structures

Table B.5: Structure of the AGENT_ INFO table

Column Type Description
farmstead_id integer GIS Id of the farm (key)
pop integer Population ID
clu integer Cluster ID
catchment integer Catchment
agent_id integer MP-MAS internal agent index
sec integer MP-MAS internal sector id (not gis_id)
numplots integer number of plots

Table B.6: Structure of the ASSET_CDF table

Column Type Description
pop integer Population ID (key)
clu integer Cluster ID (key)
asset identifier Identifier of networkobject (key)
upbound number (0-100) Upper bound of CDF segment (key)
value number number of members to assign for this

CDF segment

Table B.7: Structure of the ASSET_ ENDOWMENTS table

Column Type Description
farmstead_id integer GIS Id of the farm (key)
asset identifier Identifier of networkobject (key)
value number endowment

Table B.8: Structure of CropWat tables

Column Type Description
CROPWAT_PRECIPEXPECT

gisid identifier Gis ID of sector
month integer calendar month (1..12)
precipitation number volume

CROPWAT_PRECIPACTUAL
gisid identifier Gis ID of sector
year integer year of flow
month integer calendar month (1..12)
precipitation number volume

CROPWAT_EVAPOEXPECT
gisid identifier Gis ID of sector
month integer calendar month (1..12)
evapotranspiration number volume

116

CROPWAT_EVAPOACTUAL
gisid identifier Gis ID of sector
year integer year of flow
month integer calendar month (1..12)
evapotranspiration number volume

Table B.9: Structure of EDIC tables

Column Type Description
EDICROUTING

from_gisid integer gisid of sector where flow originates
to_gisid integer gisid of sector where flow arrives
surface_coeff share surface flow coefficient
subsurface_coeff subsurface flow coefficient

EDICINFLOWEXPECT
inflow_id identifier ID of inflow
month integer calendar month (1..12)
flow number volume of flow

EDICINFLOWACTUAL
inflow_id identifier ID of inflow
year integer year of flow
month integer calendar month (1..12)
flow number volume of flow

EDICPRECIPEXPECT
gisid identifier Gis ID of sector
month integer calendar month (1..12)
precipitation number volume

EDICPRECIPACTUAL
gisid identifier Gis ID of sector
year integer year of flow
month integer calendar month (1..12)
precipitation number volume

EDICAGENTRIGHTS
catchment_ integer Catchment ID (=0)
gisid identifier Gis ID of sector
farmstead_id integer Farmstead Id as used in maps
inflow_id identifier ID of Inflow
share_in_sector_flows share Agent’s share of sector’s share of inflow

EDICSECTORRIGHTS
gisid identifier Gis ID of sector
inflow_id identifier ID of Inflow
water_right_share share Sector share to inflow
max_flow_capacity number Maximum flow capacity of canals in

sector with respect to this inflow
EDICIRRIGMETHODS

irrig_id integer ID of irrigation technology
irrig_txt string Name of irrigation technology
irrig_code string MP-MAS Code of Irrigation technology
night_sh share Loss through night time runoff
evapo_sh share evapotranspiration share
surface_sh share surface runoff share
subsurface_sh share subsurface runoff share

117

ground_sh share groundwater loss share

Table B.10: Structure of the FIXCOSTS table

Column Type Description
pop integer Population ID (key)
clu integer Cluster ID (key)
upbound number Upper bound of farm size segment

(hectare) to which the following fix costs
apply(key)

fix number Fixed cost that does not depend on
farm size within the size class (in mon-
etary units)

var number Additional fixed costs that depends on
farm size (in monetary units per ha)

Table B.11: Structure of the HOUSEHOLD_CDF table

Column Type Description
pop integer Population ID (key)
clu integer Cluster ID (key)
kindsexageid identifier Sex-Age-Category
upbound number (0-100) Upper bound of CDF segment
value integer number of members to assign for this

CDF segment

Table B.12: Structure of the HOUSEHOLD_ COMPOSITION table

Column Type Description
farmstead_id integer GIS Id of the farm (key)
sexagecat identifier Identifier of the sex-age-category (key)
value number number of members

Table B.13: Structure of the HOUSEHOLD_MEMBER_TYPES ta-
ble

Column Type Description
For the basic demography model:
code identifier ID of householdmember category (key)
career identifier ID of the career of this category
sex 0-1 0 - female, 1- male
lowage integer lower age bound
upage integer upper age bound
For the advanced demography model:
code identifier ID of householdmember category (key)
career identifier ID of the career of this category
probably_married 0-1 if the household member is married at

the beginning of the simulation (only if
suitable partner available)

lowage integer lower age bound

118

upage integer upper age bound

Table B.14: Structure of the HOUSEHOLD_DYNAMICS table

Column Type Description
pop integer Population (key)
career identifier The Career Identifier (key)
upperyear integer The upper bound of the age segment

the information is provided for.(key)
labgrp identifier Labour category the agent provides

labour to in this age segment
labprov number Amount of labour per year the agent

provides within this age segment
mortality fraction Probability of dying for every year within

the age segment
fertility fraction Probability of giving birth for every year

within the age segment
Additional columns for the advanced demography model:
p_marriage fraction probability of finding a partner in case

member has not got one yet
p_leaving fraction probability of leaving the household

(with partner)
p_retiring number values between 0 and 1 indicate proba-

bility voluntary attempt to retire, values
above one indicate sure (obligatory) re-
tirement (Retirement for normal house-
hold members always succeeds, retire-
ment of household head requires con-
ditions to be met)

priority_hhead number priority in selection procedure for new
household head: The lower the value,
the higher the priority. Negative values
indicate person cannot become house-
hold head, values above 5000 indi-
cate person can only become house-
hold head when old one dies.

mincons number monetary minimum consumption of
household member

Additional columns for the advanced consumption model:
energy number Yearly energy need within this age seg-

ment (only)
nutrient2, ... number Further nutrient needs within this age

segment (optional and only for ad-
vanced consumption models)

Table B.15: Structure of the HOUSEHOLD_SWITCHING table

Column Type Description
pop integer Population (key)
orig_career identifier The Career Identifier (key)

119

reason integer Reason for switching: 0 - Career of de-
scendants, 1 - Career to switch to af-
ter marriage, 2 - Career of partner, 3
- Career to switch to when becoming
household head, 4 - Career to switch
to when partner becomes household
head, 5 - Career to switch to when re-
tiring

new_career identifier The Career Identifier (key)
probability fraction the probability to switch to/spawn the

new career in case the reason applies

Table B.16: Structure of the INFPROJ and INFPROJPARTICI-
PANTS tables

Column Type Description
INFPROJ

project_id identifier Project Identifier
year integer Year of Project Implementation
object idientifier Network object that is supplied by

Project
size number Size of network object provided (e.g.

ha)
total_cost number total cost of the projects over all partic-

ipants
subsidized_share share Share that has been subsidized

INFPROJPARTICIPANTS
project_id identifier Project Identifier
farmstead_id integer Farmstead id of participant
catchment_id integer Catchment Id of Farmstead
sector_id integer Sector Id of Farmstead

Table B.17: Structure of the INNOVATIONS table

Column Type Description
network integer network index (counting from 0) (key)
segment integer segment index (counting from 0) (key)
innogrp identifier innovation group identifier (key)
available integer model period the networkobjects of this

innovation group become available to
the agents of this segment (exact avail-
ability depends on COMTYPE !)

accessible 0-1 whether the networkobjects of this in-
novation group are accessible to the
agents of this segment at simulation
start or not

Table B.18: Structure of the INVESTMENT_HORIZON table

Column Type Description
pop integer Population (key)

120

parameter parameter setting any of the INVEST-
MENT_HORIZON_. . . parameters

setting number population specific value

Table B.19: Structure of the INVEST-
MENT_HORIZON_CONSTRAINTS table

Column Type Description
pop integer Population (key)
minlife integer lower bound of remaining lifetime seg-

ment
constraint identifier identifier of corresponding constraint
rhsvalue number value to be entered on the right hand

side of the constraint

Table B.20: Structure of the PRODUCER_ORGANIZATIONS table

Column Type Description
PO integer Running PO number (key)
Description text Name of PO
File path Path to .cll file containing PO decision

problem (relative to working directory)

Table B.21: Structure of the PRO-
DUCER_ORGANIZATION_SERVICES table

Column Type Description
PO integer Running PO number (key)
POservice identifier Identifier of PO service (key)
member_activity identifier identifier of quantity activity in farm

agent MIP
PO_qconstraint identifier identifier of quantity constraint in PO

MIP
PO_qactivity identifier identifier of quantity activity in PO MIP
PO_profit identifier identifier of profit activity in PO MIP

Table B.22: Structure of the REGION table

Column Type Description
gisid integer ID of the village/sector in the GIS map

(overall ID for the region)
code string Name for the Region
catchid integer Id of the Catchment/District
subsector 0-1 Is this a subsector ?
beingused 0-1 Is this sector to be used?
rank integer Rank of the sector
Additional columns if the EDIC hydrology model is used:
reuse number Initially Expected Reuse Factor
canalefficieny share Canal Efficiency

121

watersystemefficiency number Water System Efficiency due to
Overnight Storage

bcoeff share b calibration coefficient of the EDIC
model

gcoeff share g calibration coefficient of the EDIC
model

num_random_wr integer Number of random water rights to be
allocated (0)

Table B.23: Structure of the SEEDS table

Column Type Description
gisid integer identifier of the sector (key)
seed integer random seed

Table B.24: Structure of the SEGBOUNDS table

Column Type Description
network integer network index (counting from 0)
segment integer segment index (counting from 0)
soil integer soil index (counting from zero)
physbound number physical bound for investments on that

soil type
oppcost number estimated opportunity cost for invest-

ments on that soil type

Table B.25: Structure of the SEGINFO table

Column Type Description
network integer network index (counting from 0)
segment integer segment index (counting from 0)
variable name of MP-MAS parameter to set
value segment specific setting

Table B.26: Structure of the STANDARD_LAND_RENTS table

Column Type Description
network integer network index (counting from 0)
segment integer segment index (counting from 0)
soil integer soil index (counting from zero)
rent number price for renting out/selling of land if

agent has shortage of liquidity when
land market and perennial model are
not used

Table B.27: Structure of the SUCCESSION_CONTROL table

Column Type Description

122

pop integer Population (key)
parameter parameter setting any of the SUCCES-

SION_CONTROL_. . . parameters
setting number population specific value

123

B.3.4 [USER TABLES]

In the USER TABLES section you can define tables for data you want to refer to in the part of the
model structure, which you define yourself. As the table format is not predefined, you have to specify
the number of columns, mpmasql should treat as key columns. The syntax for user table definitions is
tablename = (tabletype , number of key columns) { tablesource: MFL

expression that can

span several lines

}

The table type can be either sql or ascii. For tables of types sql, the expression in the curly brackets
should result in an SQL SELECT statement that is being send to the database specified in the control
file and results in a table of the required format. E.g.
yields = (sql , 3) { "SELECT crop_id , soil_id , intensity , quantity

FROM example_db.tbl_yields

WHERE weather = " ~ #var(WEATHERSCEN)

}

For tables of type ascii, the expression in the curly brackets should result in a filename of a text file
with values in tab-separated format (experimental). E.g.
yields = (ascii , 3) { "data/dry_year_yields.txt" }

B.3.5 [USER VARIABLES]

In the USER VARIABLES section, you define your own variables and lists, which you can then use the
model strcuture file and the INSTANCES section of the model data file. The definition syntax is similar
to the definition of configuration and MPMAS parameters and global variables. MFL expressions can
refer to global variables, configuration parameters, MPMAS parameters and user-defined tables.
<variablename > = <value or list: MFL expression >

Examples:
WEATHER = "dry"

MONTHS = #steps (1,12,1)

PRODUCTS = #table(products ,0, [])

B.3.6 [INSTANCES]

The INSTANCES section contains lists corresponding to classes in the model structure file. Each
class of the model structure file is a blueprint describing all the model elements (like activities, assets,
constraints, ...) that are to be created for every item in the corresponding lists. The list members have
to correspond to the rules for identifiers, i.e. they can contain only letters of the English alphabet,
digits and underscores. You can use MFL functions to specify these lists referring to all global and
user variables, configuration and MPMAS parameters and user defined tables. The syntax is simply:
<classname > = <list: MFL expression >

Examples:
PRODUCTS = [wheat , barley , maize]

MACHINERY = #sql(" SELECT machinery_id FROM tbl_machinery WHERE

available_in_study_area = TRUE")

PERENNIALS = #table(perennials , 0, [])

124

B.4 Model structure file

The model structure file is subdivided into four sections. These section headings are syntactically
meaningful, i.e. you cannot omit them, however you can rearrange their order if you like.

[ACTIVITY TYPES] Here you can define additional types of LP activities, apart from the pre-defined
ones. Activity types are mainly used to sort the activities in the LP matrix, and to refer to groups
of activities in mqlmatrix.

[CONSTRAINT TYPES] Here you can define additional types of LP constraints, apart from the pre-
defined ones. Constraint types are mainly used to sort the constraints in the LP matrix, and to
refer to groups of constraints in mqlmatrix.

[DEFAULTS] Here you can change default settings for all elements.

[MODEL] This is the main part, where you define your decision model and the links to submodels.

B.4.1 [ACTIVITY TYPES] and [CONSTRAINT TYPES]

These two sections look the pretty much the same. They just contain a comma-separated list of the
additional types you want to define, in the order you want them to appear in the LP tableau. The lists
can stretch over several lines.

Example:

[ACTIVITY TYPES]

grow , hire , default ,

invest

[CONSTRAINT TYPES]

balance , default ,

endowment

For matrix constraints and activities, types fulfill a double role. First, there are predefined types
which denote special elements that have to be indicated to MP-MAS in the input file, e.g. the liquidity
constraint, short term credit activity, household labor endowment, soil endowment and so on (see
Section B.4.1) . These types are known to MP-MAS and should not be included into the ACTIVITY
TYPES and CONSTRAINT TYPES section, as there position in the input file is fixed an should not be
changed.

Second, these types are used to sort the matrix elements according to the sorting order specified by
the user in the variables file. The user is free or better is advised to define additional types for those
matrix elements which do not have to be marked as special elements in order to have control over the
positioning of the elements in the matrix.

Activities and constraints are sorted first according to the type order you specify in the first two
section inf the structure file and then alphabetically by activity identifiers (numbers receive special
treating in alphabetical treatment, making sure that e.g. labor_in _month_2 is located before labor_in
_month_12.

Special activity and constraint types

Table B.28: Special matrix element types

125

Activities
MASsell Selling activity: need a Market.dat entry and

are placed first in the matrix
MASbuy Buying activity: also need a Market.dat entry

and are placed after selling activities
MASfoodbuy Advanced consumption model: Buying food,

not considered in income, but in cash flow cal-
culation

MASfoodconsume Advanced consumption model: Consuming
self-produced food, not considered in cash
flow, but in income calculation

MASlabpin a hiring permanent labour activity
MASlabpout a selling permanent labour activity
MASlabtin a hiring temporary labour activity
MASlabtout a selling temporary labour activity
MASsav savings activity
MASdep short-term depositing activity
MASscred short-term credit activity
MASfuture future selling activity: have to go last and not

counted for cash flow calculation, but for in-
come

MASnutpenalty Advanced consumption model: disutility for
starving, not considered in income nor cash
flow

MAStppenalty Time preference penalty, not considered in in-
come nor cash flow

MASpenalty User defined disutility, not considered in in-
come nor cash flow

MASzero an activity not counted in cash income calcu-
lation, go even after future selling activities

Constraints
MASliq Liquidity Endowment Constraint
MASlab Household labour endowment
MASsoil Soil Endowment
MAScas Cash Financing Constraint
MASinv Soil Constraint for Perennial Investments
MASly1 Liquidity in first year
MASong Ongoing Liquidity
MASscl Short-Term Credit Limit
MASzero ‘Zero’ Constraint: go last, static RHS value for

all agents

126

B.4.2 [DEFAULTS]

Here you can change default settings for elements of all classes. E.g. if you would like to make all
activities integer activities by default and set the default priority to 100, you’re DEFAULTS section
would look like this:

[DEFAULTS]

#activity activity {

integ #= 1

priority #= 100

}

If you do not want to specify any customary default settings, you can omit the whole section.

B.4.3 [MODEL]

The main model structure section contains class definitions, which themselves contain model element
definitions, which then again contain field (or attribute) definitions and subelement field definitions.

#class <class1name > {

#<elementtype > <element identifier > {

<field name: MFL expression > #= <value: MFL expression >

#<subelement >> <field name: MFL expression > #= <value: MFL

expression >

}

...

}

#class <class2name > {

...

}

...

Model element types

There are seven types of model elements that can be included into a class (see Table B.29). Each
of these have a number of predefined fields (attributes) and subelement fields, whose values must,
respectively can be set in the model structure file. For LP activities, every other field is interpreted
as the coefficient of this activity in the constraint with the identifier that corresponds to the attribute
name. In all other elements unknown fields are ignored.

Table B.29 provides an overview of available types of model elements and the next subsections will
describe the defined attributes for each type of model element.

Table B.29: Types of model elements

Type Description
activity An activity in the decision model
constraint An constraint in the decision model
asset A farm asset/resource that provide ca-

pacities to the agent, can be invested
into, may be associated to a debt pay-
ment, ages and wears

127

perennial A complex element that contains activ-
ities, constraints and an asset linked to
a perennial crop type

livestock A complex element that contains activ-
ities, constraints and assets linked to a
livestock type

sos A special ordered set, a set that groups
some binary integer activities of which
only one can be chosen

timepreferencepenalty

Activity attributes

Table B.30: Attribute fields for activities

Field Description Values Default
name Name of the activity (for commented in-

put files)
any string "N/A"

unit Unit of the activity (for commented input
files)

any string "N/A"

type compare Section B.4.1 type identifier default
account Account for partitioning of total gross-

margin
account identifier not_specified

lbound Lower Bound any number 0
ubound Upper Bound any number 1031

integ Integer activity 0-1 0
priority Branching priority for integer activities 0-1000 1000
pseudo_down downside pseudo costs for integers number 0.01
pseudo_up upeside pseudo costs for integers number 0.01
sos SOS the activity belongs to sos identifier -1
sos_position position in SOS integer 0
orow objective row coefficient for Initital Year

and Single Matrix Mode
any number 0

orow_<modelyear> actual objective row coefficient for year
<modelyear>

any number 0

consfix Fixed in end-of-year decisions ? 0-1 0
landfix Fixed in land market decisions ? 0-1 0
cptype Type of changing production costs (0:

normal, 1: perennial, 2: no updating of
liquidity and credit coefficients)

integer 0

account When using the R output script, this
field can be used to for a detailed de-
composition of revenue and cost into
different accounts

"not_specified"

128

type_of_payment Determines how the objective row co-
efficient of the activity is treated in the
MPMAS income and cash flow calcula-
tion: 1 - cash earning (income + cash
flow), 2 - earning in-kind (income), 3
- purchase of food (cash flow), 4 -
consumption of self-produced food (in-
come), 5 - production cost (income +
cash flow), 6 - appreciation of assets
(income), 7 - utilities (neither nor). The
following activity types have predeter-
mined values: MASsell (1), MASsel-
lkind (2), MASfoodbuy (3), MASfood-
consume (4), MASfuture (6), MASzero
(7), MASnutpenalty (7), MAStppenalty
(7), MASpenalty (7). The default value
for all other activities is 5 and can be
overriden here

integer 5

Constraint attributes

Table B.31: Attribute fields for constraints

Field Description Values Default
name Name of the constraint (for commented

input files)
any string "N/A"

unit Unit of the constraint (for commented
input files)

any string "N/A"

eqtype Equation operator (default is 1 (≤) digit (1: ≤; 2: ≥; 3: =) 1
epsilon Precision for equality constraints number 0
range Lower bound for LE and EE, upper

bound for GE constraints (only very sel-
dom required to be set)

number ≤: −1031;
=: 0;
≥: 1031

type compare Section B.4.1 type identifier
value for MASzero constraints (cf. Sect.B.4.1)

only: the value to be set
any number (default: 0)

labgrp for MASlab constraints (cf. Sect.B.4.1)
only: the labour group this labour con-
straint belongs to

labour group identifier

Asset attributes and subelements

Table B.32: Attribute fields for assets

Field Description Values
name Name of the asset (for commented in-

put files)
any string "N/A"

innogrp Innovation group the asset belongs to
(cf. Sect. 4.12)

innovation group identi-
fier, optional

default

type Asset type (0: Asset with land demand,
1 : Asset without land demand, 2: Sym-
bolic asset, > 2: Asset types defined by
special country versions)

integer 1

129

div Asset is divisible 0-1 1
acqcost Acquisition cost of asset any number, 0
lifetime life time of the asset any positive integer 1
terrain soil type the asset requires (perennials) integer -1
mininvest Minimum investment size 0
act The related investment activity activity identifier -
con The related endowment constraint constraint identifier -
perm the related yield constraint (for perenni-

als)
constraint identifier or -1 -1

multiplier value passed into the rhs endowment,
when agent invests into one unit of the
asset

any number 1

innovativeness Innovativeness this object indicates default 4
eqshare Share of the acquisition cost that has to

be financed from own capital
fraction between 0 and 1 #var(EQSHARE)

irate Interest rate on foreign capital used to
buy the asset

fraction between 0 and 1 #var(INTEREST
_LONGCRD)

available_until_period last period the object is available for in-
vestment (currently only for COUNTRY
== 5)

integer 1000

oname Shortname for the asset (10 charac-
ters) passed to MP-MAS

10 Character-String (auto)

landreq Does the object require land - for lottery 0-1 0
inflation_rate_past Country switch Germany (5): Assumed

average price increase in the past (i).
Acquisition cost of assets in agents’ in-
ventory at simulation start are divided
by (1+ i)age , to account for the fact that
purchases prices were lower in the past

0

minimum_age_of_asset_at_simulation_start Country switch Germany (5): Minimum
age an agent’s asset of this type can
have at the beginning of the simulation

1

maximum_age_of_asset_at_simulation_start Country switch Germany (5): Maxi-
mum age an agent’s asset of this type
can have at the beginning of the simu-
lation

1000

Perennial attributes and subelements

Livestock attributes and subelements

SOS attributes and subelements

Table B.33: Attribute fields for special ordered sets

Field Description Values Defaults
name Name of the SOS (for commented input

files)
any string "N/A"

130

type Type of sos (1: at maximum one of the
activities in the set can be non-zero, 2:
at maximum two of the activities in the
set can be nonzero, and these have to
be neighbors, 3: exactly one of the ac-
tivities in the set has to be one, all oth-
ers zero)

integer 3

priority branch and bound priority of the set 0-1000 1000

Time-preference penalty attributes and subelements

131

Table B.34: Example: Results for #this(instance) and #this(by,<i>) in the respective element
activitiy id instance by,0 by,1 by,2
wheat_grow_0_high wheat 0_high 0 high
wheat_grow_0_medium wheat 0_medium 0 medium
wheat_grow_0_low wheat 0_low 0 low
wheat_grow_1_high wheat 1_high 1 high
wheat_grow_1_medium wheat 1_medium 1 medium
wheat_grow_1_low wheat 1_low 1 low
wheat_grow_2_high wheat 2_high 2 high
wheat_grow_2_medium wheat 2_medium 2 medium
wheat_grow_2_low wheat 2_low 2 low

Use of mpmasql function language in class definitions

For field name and value definitions you can use mpmasql function language (MFL) expressions. You
can also use MFL expressions to create complex element identifier, if you append by to the element
type and provide a fixed element identifier part. The resulting element identifier will be <instance
identifier>_<fixed identifier>_<result of MFL expression>.

#class <class1name > {

#<elementtype >by <fixed identifier > <MFL expression > {

...

}

}

For model element identifiers and field names the result of any MFL expression is interpreted as a
list, and consequently if the resulting list contains several items, one element/field for each of the list
items is created, if the list is empty, no element/field is created at all. With a few exceptions, value
definitions can only be given as MFL expressions that result in a scalar value. (If they receive a list,
they usually use the first item in the list only).

You can refer to the identifier of the instance currently created with #this(instance) in any MFL
expression in the whole class. You can refer to the current non-fixed part of the element identifier with
#this(by,0) and to the current field created with #this(field,0). Any number i greater than zero
will refer to the current element of the ith array that was used in the element/field name definition. For
example:

#class CROP {

#activityby grow #foreach(SOIL)_#foreach(INTENSITY) {

...

#table(crop_products ,0,[# this(instance)])"_balance" #= -1 *

#table(yields ,4,[# this(instance), #this(field ,1),

#this(by ,1), #this(by ,2))

...

}

...

}

Let’s assume the instance list CROP contained a ’wheat’ instance, let’s further assume the user-
defined lists SOIL was [0, 1, 2] and the user defined list INTENSITY contained [high, medium, low],
then the above element definition would return 9 activities. Then the values return by the local vari-
ables accessed through the #this() function would be as shown in Table B.34.

Further, let’s assume that the table query #table(crop_products,0,[#this(instance)])"_balance"
returned a list with two elements [wheat, straw] the each of the 9 activities would have a field wheat_balance

132

and straw_balance corresponding to the coefficients of the activity in the constraints of the same name.
Then the #this(field,1) in the value expression would evaluate to "wheat" for the first and "straw"
for the second field.

Reusing elements of other classes

You may have classes, which are pretty similar and differ only in a few elements. For example, you
could have a class PRODUCTS and a class INTERMEDIATES. Both need a yield balance constraint
and a selling activity (assuming there is a market for intermediate products). However, the class
INTERMEDIATES additionally needs a buying activity and a transformation activity, which e.g. trans-
forms hay into energy and raw fodder input for animal production.

To save you time and ensure that any changes you make to the elements in the PRODUCTS class
also immediately apply to the INTERMEDIATES class, you can just let INTERMEDIATES use the
selling activity and the yield balance constraint from the PRODUCTS class by adding an #has ()

elements like statement. Or, as syntactic sugar, if you think if your class name is in plural your
statement should also be in plural, you might opt for #have () elements like, too. Or, if you prefer
standard object-oriented language you can write #inherits () from.

Assuming you already defined a PRODUCTS class with a contraint ‘balance’ and an activity ‘sell’,
you write the following, to include the same elements into the INTERMEDIATES class and additionally
define a ‘buy’ and a ‘transform’ activity.

#class INTERMEDIATES {

#has (balance , sell) elements like PRODUCTS

#activity buy {

....

}

#activity transform {

.......

}

}

An asterisk (*) instead of a list of elements, uses all elements of the parent class. Thus, as balance
and sell are all the elements in the class PRODUCTS, you could have also written:

have (*) elements like PRODUCTS.

Further, you can override attributes of a reused class. If - because of whatever reason - you have
stored your intermediate product prices in a different table than your product prices (e.g. inputprices),
you could still let INTERMEDIATE use the sell activity from PRODUCT and override only the orow

attribute afterwards.

#class INTERMEDIATES {

#has (balance , sell) elements like PRODUCTS

#activity sell {

orow #= #table(inputprices , 3, [# thisinst])

}

}

The resulting selling activity will have the same attributes as the one in the PRODUCT class, only
the objective row attribute is defined differently. In this case it is, of course, important that you put the
has () elements like statement before the overriding attribute definition. Otherwise, you will first
define a new activity which is then overriden by the copied one.

133

Templates for standard classes

#class MASSTANDARD {

#constraint liqendow {

name #= "Liquidity endowment"

unit #= #var(CURRENCY)

type #= MASliq

}

#constraint year1liq {

name #= "Year 1 liquidity"

unit #= #var(CURRENCY)

type #= MASly1

}

#constraint ongliq {

name #= "Ongoing liquidity"

unit #= #var(CURRENCY)

type #= MASong

}

#constraint stcredit {

name #= "Short -term credit limit"

unit #= #var(CURRENCY)

type #= MASscl

}

#activity stcreditact {

name #= "Short -term credit"

unit #= #var(CURRENCY)

type #= MASscred

orow #= -1 * #var(INTEREST_SHCRD)

#this(instance)_ongliq #= -1

#this(instance)_stcredit #= 1

}

#activity stdeposit {

name #= "Short -term deposits"

type #= MASdep

unit #= #var(CURRENCY)

orow #= #var(INTEREST_SHDEP)

#this(instance)_ongliq #= 1

}

#activity liqtrans {

type #= transfer

name #= "Transfer Liquidity"

unit #= #var(CURRENCY)

#this(instance)_ongliq #= -1

#this(instance)_year1liq #= -1

#this(instance)_liqendow #= 1

}

}

#class MASSTANDARD {

#constraint liqendow {

name #= "Liquidity endowment"

unit #= #var(CURRENCY)

134

type #= MASliq

}

#constraint year1liq {

name #= "Year 1 liquidity"

unit #= #var(CURRENCY)

type #= MASly1

}

#constraint ongliq {

name #= "Pre -harvest liquidity"

unit #= #var(CURRENCY)

type #= MASong

}

#constraint stcredit {

name #= "Short -term credit limit"

unit #= #var(CURRENCY)

type #= MASscl

}

#constraint liqendofyear {

name #= "End of year liquidity"

unit #= #var(CURRENCY)

type #= MASliqend

eqtype #= 3

}

#constraint stcredit_balance {

name #= "Short -term credit balance"

unit #= #var(CURRENCY)

type #= MASscbal

}

#constraint stcredit_defyno {

name #= "Short -term credit potential default"

unit #= #var(CURRENCY)

type #= MASscdef

}

#activity stcredit_repaid {

name #= "Short -term credit repaid"

unit #= #var(CURRENCY)

type #= MASscred

orow #= -1 * #var(INTEREST_SHCRD)

#this(instance)_liqendofyear #= 1 + #var(INTEREST_SHCRD)

#this(instance)_stcredit_balance #= -1

}

#activity stcredit_taken {

name #= "Short -term credit taken"

unit #= #var(CURRENCY)

type #= MASscborrow

consfix #= 1

#this(instance)_ongliq #= -1

#this(instance)_stcredit #= 1

#this(instance)_stcredit_balance #= 1

}

#activity stcredit_defaulted {

name #= "Short -term credit defaulted"

unit #= #var(CURRENCY)

type #= MASscdefault

#this(instance)_stcredit_balance #= 0

135

#harvest > #this(instance)_stcredit_balance #= -1

#this(instance)_defyno #= 1

}

#activity remaining_cash {

name #= "Remaining cash end of year"

unit #= #var(CURRENCY)

type #= MASrcash

type_of_payment #= 0

#this(instance)_liqendofyear #= 1

}

#activity stdeposit {

name #= "Short -term deposits"

type #= MASdep

unit #= #var(CURRENCY)

orow #= #var(INTEREST_SHDEP)

#this(instance)_ongliq #= 1

#this(instance)_liqendofyear #= - (1 + #var(INTEREST_SHDEP))

}

#activity liqtrans {

type #= transfer

name #= "Transfer start liquidity to pre -harvest

liquidity"

unit #= #var(CURRENCY)

#this(instance)_ongliq #= -1

#this(instance)_year1liq #= -1

#this(instance)_liqendow #= 1

}

#activity liqtransend {

type #= transfer

name #= "Transfer remaining pre -harvest liquidity to

end of year cash"

unit #= #var(CURRENCY)

#this(instance)_ongliq #= 1

#this(instance)_liqendofyear #= -1

}

#activity penalty_for_credit_default {

type #= MASpenalty

name #= "Utility penalty for defaulting on credits"

unit #= #var(CURRENCY)

integ #= 1

ubound #= 1

orow #= -1 * #var(UP_CREDIT_DEFAULT)

#this(instance)_stcredit_defyno #= -1 * #var(MAX_DEFAULT)

}

}

#class SOILS {

#constraint soil {

name #= "Soil of type " ~ #this(instance)

unit #= ha

type #= MASsoil

eqtype #= 3

}

136

}

#class LABOR {

#constraint hhlabor {

name #= "Household labor of type: " ~#this(instance)

unit #= "person year"

type #= MASlab

labgrp #= #this(instance)

}

#constraint labor_capacity {

name #= "Capacity of labor of type: " ~ #this(instance)

unit #= "person year"

}

#activity perlabin {

name #= "Hiring in permanent labor of type: " ~ #this(instance)

unit #= persons

type #= MASlabpin

integ #= 1

ubound #= #var(LIMIT_LABOR_PERM)

orow #= -1* #var(WAGE_PERMANENT)

#this(instance)_labor_capacity #= -1

}

#activity hhlabout {

name #= "Hiring out household labor of type: " ~

#this(instance)

unit #= persons

type #= MASlabpout

orow #= 1* #var(WAGE_HHOUSEHOLD)

#this(instance)_hhlabor #= 1

}

#activity labor_transfer {

name #= "Transfer household labor of type:" ~#this(instance)

unit #= persons

#this(instance)_hhlabor #= 1

#this(instance)_labor_capacity #= -1

}

}

#class MASCONSUMPTION {

'income top block

#constraint xc_inc_transc {

name #= "Income Transfer"

type #= MASxc_inc_trans

unit #= #var(CURRENCY)

eqtype #= 3

}

#constraint xc_inc_funcc {

name #= "Income Function"

type #= MASxc_inc_func

unit #= #var(CURRENCY)

eqtype #= 3

137

}

#activity xc_inc_transa {

name #= "Income Transfer"

type #= MASxc_inc_trans

unit #= #var(CURRENCY)

#this(instance)_xc_inc_funcc #= -1

#this(instance)_xc_inc_transc #= 1

}

#activity xc_inc_funca {

name #= "Income Function"

type #= MASxc_inc_func

unit #= #var(CURRENCY)

#this(instance)_xc_inc_transc #= -1

#this(instance)_xc_sav_transc #= -1

#this(instance)_xc_sav_balance #= 1

}

'savings block

#constraint xc_sav_transc {

name #= "Savings Transfer"

type #= MASxc_sav_trans

unit #= #var(CURRENCY)

eqtype #= 3

}

#constraint xc_sav_funcc {

name #= "Savings Function"

type #= MASxc_sav_func

unit #= #var(CURRENCY)

eqtype #= 3

}

#constraint xc_sav_balance {

name #= "Savings Balance INC = EXP + SAV"

type #= MASxc_sav_balance

unit #= #var(CURRENCY)

eqtype #= 3

}

#constraintby xc_sav_lbound #steps(1, #count(XC_SAV_INCSEGS),

1) {

name #= "Savings Segment lowerbound "~ #this(by ,0)

type #= MASxc_sav_lbound

unit #= #var(CURRENCY)

}

#constraintby xc_sav_ubound #steps(1, #count(XC_SAV_INCSEGS),

1) {

name #= "Upperbound Savings Segment "~ #this(by ,0)

type #= MASxc_sav_ubound

unit #= #var(CURRENCY)

}

#activity xc_sav_funca {

name #= "Savings Function"

type #= MASxc_sav_func

unit #= #var(CURRENCY)

#this(instance)_xc_sav_funcc #= -1

#this(instance)_xc_sav_balance #= -1

138

}

#activity xc_sav_seg_0 {

name #= "Savings Segment 0"

type #= MASxc_sav_seg0

unit #= #var(CURRENCY)

#this(instance)_xc_sav_transc #= 1

#this(instance)_xc_sav_funcc #= 0

#this(instance)_xc_sav_lbound_#steps(1, #count(XC_SAV_INCSEGS),

1) #= -1

' ubound set by MP-MAS

}

#activityby xc_sav_seg #steps(1, #count(XC_SAV_INCSEGS) -1, 1) {

name #= "Savings Segment "~# this(by ,0)

type #= MASxc_sav_seg2

unit #= #var(CURRENCY)

#this(instance)_xc_sav_transc #= 1

#this(instance)_xc_sav_lbound_#this(by ,0) #= -1

#this(instance)_xc_sav_ubound_#this(by ,0) #= 1

ubound #= #listelement(XC_SAV_INCSEGS , #this(by ,0))

}

#activity xc_sav_seg_last {

name #= "Savings Segment "

type #= MASxc_sav_seg3

unit #= #var(CURRENCY)

#this(instance)_xc_sav_transc #= 1

#this(instance)_xc_sav_ubound_#count(XC_SAV_INCSEGS) #= 1

ubound #= #listelement(XC_SAV_INCSEGS ,

#count(XC_SAV_INCSEGS))

}

#activity xc_sav_bin_1 {

name #= "Savings Binary 1"

type #= MASxc_sav_bin1

unit #= #var(CURRENCY)

integ #= 1

ubound #= 1

#this(instance)_xc_sav_ubound_1 #= -1 *

#listelement(XC_SAV_INCSEGS , 1)

}

#activityby xc_sav_bin #steps(2, #count(XC_SAV_INCSEGS), 1) {

name #= "Savings Binary "~# this(by ,0)

type #= MASxc_sav_bin2

unit #= #var(CURRENCY)

integ #= 1

ubound #= 1

#this(instance)_xc_sav_lbound_#this(by ,0) #=

#listelement(XC_SAV_INCSEGS , #this(by ,0) -1)

#this(instance)_xc_sav_ubound_#this(by ,0) #= -1 *

#listelement(XC_SAV_INCSEGS , #this(by ,0))

}

'food - non food block

#constraint xc_expenditure_balance {

name #= "Expenditure balance"

type #= MASxc_expbal

unit #= #var(CURRENCY)

eqtype #= 3

139

}

#constraint xc_fnf_funcc {

name #= "Food Expenditure Function"

type #= MASxc_fnf_func

unit #= #var(CURRENCY)

eqtype #= 3

}

#constraint xc_fnf_constc {

name #= "Food Expenditure Constant"

type #= MASxc_fnf_const

unit #= #var(CURRENCY)

eqtype #= 3

}

#constraint xc_fnf_hhsizec {

name #= "Food Expenditure HHSize"

type #= MASxc_fnf_hhsize

unit #= #var(CURRENCY)

eqtype #= 3

}

#constraint xc_fnf_texc {

name #= "Food Expenditure TEX"

type #= MASxc_fnf_tex

unit #= #var(CURRENCY)

eqtype #= 3

}

#constraintby xc_fnf_lbound #steps(1, #count(XC_FNF_EXPSEGS) -1 ,

1) {

name #= "Food Expenditure TEX Segment Lower

Bound "~# this(by ,0)

type #= MASxc_fnf_lbound

unit #= #var(CURRENCY)

eqtype #= 1

}

#constraintby xc_fnf_ubound #steps(2, #count(XC_FNF_EXPSEGS) ,1) {

name #= "Food Expenditure TEX Segment Upper

Bound "~# this(by ,0)

type #= MASxc_fnf_ubound

unit #= #var(CURRENCY)

eqtype #= 1

}

#activity xc_fnf_funca {

name #= "Total Expenditure Function"

type #= MASxc_fnf_func

unit #= #var(CURRENCY)

#this(instance)_xc_sav_balance #= -1

#this(instance)_xc_fnf_constc #= 1

#this(instance)_xc_fnf_hhsizec #= 1

#this(instance)_xc_fnf_texc #= 1

#this(instance)_xc_expenditure_balance #= -1

}

#activity xc_fnf_consta {

name #= "Food Expenditure Constant"

type #= MASxc_fnf_const

unit #= #var(CURRENCY)

140

#this(instance)_xc_fnf_constc #= -1

#this(instance)_xc_fnf_funcc #= #var(XC_FNF_COEF_CONST)

}

#activity xc_fnf_hhsizea {

name #= "Food Expenditure HHSize"

type #= MASxc_fnf_hhsize

unit #= #var(CURRENCY)

#this(instance)_xc_fnf_hhsizec #= -1

}

#activity xc_fnf_seg_1 {

name #= "Food Expenditure TEX Seg 1"

type #= MASxc_fnf_seg1

unit #= #var(CURRENCY)

#this(instance)_xc_fnf_texc #= -1

#this(instance)_xc_fnf_lbound_1 #= -1

ubound #= #listelement(XC_FNF_EXPSEGS ,1)

}

#activityby xc_fnf_seg #steps(2, #count(XC_FNF_EXPSEGS) -1 , 1) {

name #= "Food Expenditure TEX Seg "~# this(by ,0)

type #= MASxc_fnf_seg2

unit #= #var(CURRENCY)

#this(instance)_xc_fnf_texc #= -1

#this(instance)_xc_fnf_lbound_#this(by ,0) #= -1

#this(instance)_xc_fnf_ubound_#this(by ,0) #= 1

ubound #= #listelement(XC_FNF_EXPSEGS ,#this(by ,0))

}

#activity xc_fnf_seg_last {

name #= "Food Expenditure TEX Seg "

type #= MASxc_fnf_seg3

unit #= #var(CURRENCY)

#this(instance)_xc_fnf_texc #= -1

#this(instance)_xc_fnf_ubound_#count(XC_FNF_EXPSEGS) #= 1

ubound #= #listelement(XC_FNF_EXPSEGS ,

#count(XC_FNF_EXPSEGS))

}

#activityby xc_fnf_bin #steps(1, #count(XC_FNF_EXPSEGS) -1 , 1) {

name #= "Food Expenditure TEX Binary "~ #this(by ,0)

type #= MASxc_fnf_bin

unit #= #var(CURRENCY)

integ #= 1

ubound #= 1

#this(instance)_xc_fnf_lbound_#this(by ,0) #=

#listelement(XC_FNF_EXPSEGS ,#this(by ,0))

#this(instance) "_xc_fnf_ubound_" (#this(by ,0) + 1) #= -1 *

#listelement(XC_FNF_EXPSEGS ,#this(by ,0) + 1)

}

#activity xc_nonfood_expenditure {

name #= "Non -food expenditure"

type #= MASxc_nf_exp

unit #= #var(CURRENCY)

#this(instance)_xc_expenditure_balance #= 1

#foreach(MASSTANDARD)_liqendofyear #= 1

}

'LA/AIDS Food category block

141

#constraintby xc_foo_foodcat #table(foodcats ,0 ,[]) {

name #= "Food Category "~# table(foodcats ,2,[# this(by ,0)])

type #= MASxc_foo_foodcat

unit #= #var(CURRENCY)

#consumption >category #= #this(by ,0)

#consumption >xc_foo_coeff_expsi #=

#table(foodcats ,5,[# this(by ,0)])

#consumption >xc_foo_coeff_hh #=

#table(foodcats ,6,[# this(by ,0)])

#consumption >xc_foo_crossprice_#table(foodcats ,0 ,[]) #=

#table(crossprice , 3, [#this(by ,0), #this(field ,1)])

#consumption >budget_share #=

#table(foodcats ,7,[# this(by ,0)])

}

#constraint xc_foo_constc {

name #= "LA/AIDS Constant"

type #= MASxc_foo_const

unit #= #var(CURRENCY)

eqtype #= 3

}

#constraint xc_foo_hhsizec {

name #= "LA/AIDS HHSize"

type #= MASxc_foo_hhsize

unit #= #var(CURRENCY)

eqtype #= 3

}

#constraint xc_foo_pricec {

name #= "LA/AIDS Price"

type #= MASxc_foo_price

unit #= #var(CURRENCY)

eqtype #= 3

}

#constraint xc_foo_fexc {

name #= "LA/AIDS Food expenditure"

type #= MASxc_foo_fexc

unit #= #var(CURRENCY)

eqtype #= 3

}

#constraintby xc_foo_lbound #steps(1, #count(XC_FOO_FEXSEGS) -1 ,

1) {

name #= "LA/AIDS FEX Segment Lower Bound "~ #this(by ,0)

type #= MASxc_foo_lbound

unit #= #var(CURRENCY)

eqtype #= 1

}

#constraintby xc_foo_ubound #steps(2, #count(XC_FOO_FEXSEGS) , 1)

{

name #= "LA/AIDS FEX Segment Upper Bound "~ #this(by ,0)

type #= MASxc_foo_ubound

unit #= #var(CURRENCY)

eqtype #= 1

}

#activity xc_foo_funca {

name #= "Food Expenditure Function"

type #= MASxc_foo_func

unit #= #var(CURRENCY)

142

#this(instance)_xc_expenditure_balance #= 1

#this(instance)_xc_fnf_funcc #= -1

#this(instance)_xc_foo_constc #= 1

#this(instance)_xc_foo_hhsizec #= 1

#this(instance)_xc_foo_pricec #= 1

#this(instance)_xc_foo_fexc #= 1

}

#activity xc_foo_consta {

name #= "LA/AIDS Constant"

type #= MASxc_foo_const

unit #= #var(CURRENCY)

#this(instance)_xc_foo_constc #= -1

#this(instance)_xc_foo_foodcat_#table(foodcats ,0 ,[]) #=

#table(foodcats ,4,[# this(field ,1)])

}

#activity xc_foo_hhsizea {

name #= "LA/AIDS HHSize"

type #= MASxc_foo_hhsize

unit #= #var(CURRENCY)

#this(instance)_xc_foo_hhsizec #= -1

#this(instance)_xc_foo_foodcat_#table(foodcats ,0 ,[])

#= #table(foodcats ,6,[# this(field ,1)])

}

#activity xc_foo_pricea {

name #= "LA/AIDS Price"

type #= MASxc_foo_price

unit #= #var(CURRENCY)

#this(instance)_xc_foo_pricec #= -1

#this(instance)_xc_foo_foodcat_#table(foodcats ,0 ,[])

#= #table(foodcats ,5,[# this(field ,1)])

}

#activity xc_foo_seg_1 {

name #= "LA/AIDS FEX Seg 1"

type #= MASxc_foo_seg1

unit #= #var(CURRENCY)

#this(instance)_xc_foo_fexc #= -1

#this(instance) "_xc_foo_lbound_1" #= -1

ubound #= #listelement(XC_FOO_FEXSEGS ,1)

}

#activityby xc_foo_seg #steps(2, #count(XC_FOO_FEXSEGS) -1 , 1) {

name #= "LA/AIDS FEX Seg "~# this(by ,0)

type #= MASxc_foo_seg2

unit #= #var(CURRENCY)

#this(instance)_xc_foo_fexc #= -1

#this(instance)_xc_foo_lbound_#this(by ,0) #= -1

#this(instance)_xc_foo_ubound_#this(by ,0) #= 1

ubound #= #listelement(XC_FOO_FEXSEGS ,#this(by ,0))

}

#activity xc_foo_seg_last {

name #= "LA/AIDS FEX Seg "~# count(XC_FOO_FEXSEGS)

type #= MASxc_foo_seg3

unit #= #var(CURRENCY)

#this(instance)_xc_foo_fexc #= -1

#this(instance)_xc_foo_ubound_#count(XC_FOO_FEXSEGS) #= 1

ubound #=

#listelement(XC_FOO_FEXSEGS ,# count(XC_FOO_FEXSEGS))

143

}

#activityby xc_foo_bin #steps(1, #count(XC_FOO_FEXSEGS) -1 , 1) {

name #= "LA/AIDS FEX Binary " ~#this(by ,0)

type #= MASxc_foo_bin

unit #= #var(CURRENCY)

integ #= 1

ubound #= 1

#this(instance)_xc_foo_lbound_#this(by ,0) #=

#listelement(XC_FOO_FEXSEGS ,#this(by ,0))

#this(instance)_xc_foo_ubound_ (#this(by ,0) + 1)#= -1 *

#listelement(XC_FOO_FEXSEGS ,#this(by ,0) + 1)

}

'Food category transfers

#constraintby xc_foo_cattransc #table(foodcats ,0 ,[]) {

name #= "Food Category Transfer:

"~# table(foodcats ,2,[# this(by ,0)])

type #= MASxc_foo_cattrans

unit #= #var(CURRENCY)

eqtype #= 3

#consumption >category #= #this(by ,0)

}

#activityby xc_foo_cattransa #table(foodcats ,0 ,[]) {

name #= "Food Category Transfer:

"~# table(foodcats ,2,[# this(by ,0)])

type #= MASxc_foo_cattrans

unit #= #var(CURRENCY)

#this(instance)_xc_foo_cattransc_#this(by ,0) #= 1

#this(instance)_xc_foo_foodcat_#this(by ,0) #= -1

}

#activityby buy_foodcat #table(foodcats ,0,[]) {

name #= "Buy_ "~# table(foodcats ,2,[# this(by ,0)])

type #= MASfoodbuy

orow #= -1 * #table(foodcatprice ,3, [#this(by ,0),

#var(PRICEYEAR)])

orow_#foreach(YEARS) #= -1 * #table(foodcatprice ,3,

[#this(by ,0), #var(PRICEYEAR)])

#this(instance)_hhnutrient_supplyc_#foreach(HHNUTRIENTS) #=

#table(food_category_nutrients , 3 , [#this(by ,1),

#this(field ,1)])

#consumption >category #= #this(by ,0)

#this(instance)_xc_foo_cattransc_#this(by ,0) #= -1

* #table(food_category_prices ,3, [#this(by ,1),

#var(PRICEYEAR)])

}

'Balancing Food Requirements

#constraintby hhnutrient_demandc HHNUTRIENTS {

name #= #this(by ,0)~" demand"

type #= MASnutdemand

eqtype #= 3

#consumption >nutrient #= #this(by ,0)

}

#constraintby hhnutrient_supplyc HHNUTRIENTS {

name #= #this(by ,0) ~" supply"

type #= MASnutsupply

144

eqtype #= 3

}

#constraintby hhnutrient_deficitc HHNUTRIENTS {

name #= #this(by ,0)~" deficit"

type #= MASnutdeficit

eqtype #= 3

}

#constraintby hhnutrient_balance HHNUTRIENTS {

name #= #this(by ,0) ~" supply"

type #= MASnutbalance

eqtype #= 1

}

#activityby hhnutrient_demanda HHNUTRIENTS {

name #= #this(by ,0)~" demand"

type #= MASnutdemand

#this(instance)_hhnutrient_balance_#this(by ,0) #= 1

#this(instance)_hhnutrient_demandc_#this(by ,0) #= 1

}

#activityby hhnutrient_supplya HHNUTRIENTS {

name #= #this(by ,0) ~" supply"

type #= MASnutsupply

#this(instance)_hhnutrient_supplyc_#this(by ,0) #= -1

#this(instance)_hhnutrient_balance_#this(by ,0) #= -1

}

#activityby hhnutrient_deficita HHNUTRIENTS {

name #= #this(by ,0)~" deficit "

type #= MASnutdeficit

#this(instance)_hhnutrient_balance_#this(by ,0) #= -1

#this(instance)_hhnutrient_deficitc_#this(by ,0) #= 1

}

#activityby utility_penalty_hhnutrient HHNUTRIENTS {

name #= #this(by ,0)~" deficit "

type #= MASnutpenalty

orow #= -1 * #table(utility_penalty , 2, [#this(by ,1)])

#this(instance)_hhnutrient_deficitc_#this(by ,0) #= -1

}

}

145

Appendix C

mpmasql function language

mpmasql and mpmasdist use a special function language that can be used at specific points in their
input files to express variable values. A piece of function code that defines a value is generally called
an expression. During the preparation of input files mpmasql may evaluate an expression many times
under many different circumstances (e.g. for different instances and scenarios) and arrive at very
different values depending on the values that certain variables have under these circumstances.

Expressions can evaluate to single values (like a number or a string), empty results or a list of values
(array).

C.1 Numbers and Strings

The most simple expressions only consists of a number or a single string, e.g.

1

-1

0.0753

crop

"Hire labor "

Such expressions evaluate to itself, except for double quoted strings, where the resulting value is only
the string inside the double quotes. Generally, strings without quotes are allowed as long as they
consist only of letters of the (English) alphabet, digits and underscores. If they include spaces or
punctuation they have to be included in double quotes. In general numbers can also be treated as
strings, but strings not necessarily as numbers.

C.2 Operators

Numerical operators evaluate to what you would expect: 1 +1 result in 2 and 2^4 in 16. Logical and
comparison operators result in 1 whenever for true, or 0 for false. Logical operators accept any value
unequal to zero or an empty value as true. Logical operators are short-circuit, i.e. if the condition left
of an || evaluates to true, the right hand condition is not evaluated any more, and the result is true,
likewise if the condition on the left of an && is false, the right hand condition is not evaluated and the
result is false. The ∼ operator forms one string out of two.

146

Table C.1: Operators
Strings

∼ concatenation (optional)
Simple arithmetics

+ addition
- subtraction
* multiplication
/ division
^ exponentiation

Numerical comparison
== equal
!= not equal
>= greater or equal
<= smaller or equal
> greater than
< smaller than

Logical
&& AND
|| OR
! NOT

C.3 Arrays

Arrays can be formed using square brackets and commas, e.g. [1,2,3, "wheat"] is a four element
array with the first three natural numbers and the string "wheat" as its elements. Arrays can also
result from certain functions (e.g. #table, #foreach, #sql). Arrays remain arrays when an arithmetic
or string operator is applied in combination with a scalar, and formCartesian products (combinations of
every element with every other element) whenever an operator acts on two arrays. When a numerical
comparison operator is applied to an array, the size of the array is used as an argument, while logic
operators take an array to be true whenever it is not empty.

e.g.

[1,2,3] * 3 = [3,6,9]

[1,2,3] * [1,2,3] = [1,2,3,2,4,6,3,6,9]

[1,2,3] > [1,2] = 1

[1,2,3] > 5 = 0

[] && [1,2,3] = 0

[" wheat", "maize", "barley "] " on soil " [0,1] =

[" wheat on soil 0", "wheat on soil 1", "maize on soil 0",]

The behavior of functions, when applied to an array depends on the function. In general just a few
functions can deal with arrays at all.

147

C.4 Functions

Functions take a number of arguments, i.e. numbers, strings or arrays or any expression resulting in
either of them. Of course they can be nested.

#abs returns the absolute value of the expression

#abs(<expression >)

#annuity calculates an annuity

#annuity(<interest rate >, <present value >, <lifetime >)

#count counts the elements of an array

#count(<array >)

#floor returns the integer part of a number, i.e. removes any decimals.

#floor(<number >)

#foreach inserts a user defined array or variable as an array

#foreach(<user -defined array >)

#fvalue financial function used to calculate the coefficient of average fixed equity on an investment

(i+ 1)t

(i+ 1)(t−1)
− 1

t ∗ i

#fvalue(<interest >, <lifetime >)

#if returns a value depending on a condition

#if(<condition >, <value if true >, <value if false >)

#ifalone distinguishes field values between conversion modes. The setup of some matrix elements
differs depending on whether you are converting standalone matrix files or full MP-MAS input
files. For example, investment activities should have a 0 in the constraint they add an endow-
ment to in full MP-MAS mode (as this will be entered by MP-MAS according to the network file),
while they need an entry there in Standalone Matrix Mode.

#ifalone(<value when in standalone mode >, <else >)

#ifthenelse like #if, but the condition is evaluated as a perl expression (allows the use of string com-
parison, regular expressions etc)

#ifthenelse(<condition >, <value if true >, <value if false >)

#list converts an array into a string containing the comma-separated list of the unquoted array values.

#list(<array or list >)

#list_concat concatenates several arrays.

#list_concat(<array1 >, <array2 >, ...)

#list_element inserts the ith element of an array .

148

#list_element(<array or list >,<index >)

#mapcell retrieves a value from a cell in a raster map (currently only in mpmasdist).
#mapcell(<mapname >,<x coordinate >,<y coordinate >)

#max returns the maximum of a list of values
#max(#var(VARIABLE1) , #var(VARIABLE2) , ...)

#min returns the minimum of a list of values
#min(#var(VARIABLE1) , #var(VARIABLE2) , ...)

#protected_divide performs a usual division, but returns zero instead of an error in case of a division
by zero or an empty array

#protected_divide(<dividend >, <divisor >)

#qlist converts an array into a string containing the comma-separated list of the double-quoted array
values. (Useful to construct IN subexpressions in SQL statements

#qlist(<array >)

#random_number draws a random number from a uniform distribution on the interval between 0
(inclusive) and the argument (exclusive).

#random_number(<upper bound >)

#regexp compares a string to a regular expression (see here http://perldoc.perl.org/perlre.

html for information on the Perl regular expression syntax)
#regexp(<strings to check >, <regular expression >)

#replace_null replaces an empty result by the specified argument.
#replace_null(<function result to be replaced if null >,

<replacement value >)

#report is a debugging function. It prints arguments to screen during expression evaluation. Inserts
all but the first two of its arguments .

#report(id, condition , arguments to report , ...)

id is an id you can freely choose, it is meant to avoid confusion if you use several reports
condition report is only written to screen if condition is true so you can e.g. restrict it to certain

buggy instances

The report function returns all except the first two arguments to the expression, so the actual
calculation is not affected, even if you put it inside an expression.
Examples:

orow #= #report (#this(instance) ,1, -1 *

#table(prices , 2,[#this(instance)]))

→ prints the result for the field orow for every instance of the class on the screen and each
report is identified by the instance id

orow #= #report(test ,#this(instance) == 24, -1 *

#table(prices , 2,[#this(instance)]))

149

http://perldoc.perl.org/perlre.html
http://perldoc.perl.org/perlre.html

→ prints the result for the field orow for instance 24 onto the screen and the report is identified
as test

orow #= -1 * #report(test ,#this(instance) == 24,

#table(prices , 2,[#this(instance)]))

→prints the value read from the table for instance 24 onto the screen and the report is identified
as test

#round_to rounds a number to specified number of decimals

#round_to(<number >, <decimals >)

#sql retrieves data from an sql database.

#sql(<SQL select statement >)

#steps evaluates to an array of values of equal distance

#steps(<start value >, <end value >, <stepsize >)

#table inserts a value or array read from a user-defined table.

#table(<tablename >, <column index >, <keyarray >)

Internal tables in mpmasql and mpmasdist are indexed by a number of columns, which was
defined when the table was loaded. As an example, let’s consider the following example table
named members and assume it has two key fields, i.e. the first two fields are supposed to
uniquely identify each row in the table:

farm member gender age
1 2 m 20
1 4 f 1
3 1 f 71
3 2 m 55

The code #table(members, 4, [2, 1]) would return the value ‘71’, i.e. the value which can
be found in the fourth column of the row whose first column is 2 and whose second column
is 1. If the key array of the table function contains less keys than the number of key columns
defined for the table, the table function returns a list of all unique values in the first omitted key
column (the column index is then ignored). E.g. #table(members, 0, []) would return [1,3]
and #table(members, 0, [1]) would return [2,4].

#this inserts the value of a local variable defined by mpmasql or mpmasdist

#this(<local variable >)

#this(<local array >, <arrayindex >)

#this(<local object >, <attribute name >)

#var inserts the value of a user-defined variable, global, MP-MAS parameter or configuration entry

#var(<variable name >)

150

Appendix D

Version history and changelog

D.1 Version History

D.2 Changes from version 1.03 to 2.00

MPMASQL version 2.00 comes with some convenient new features:

• much faster conversion for large models (the CSA model converts about 2 times faster than
before)

• the possibility to have table definitions in .var split over several lines to increase readability

• the possibility to read in tab-separated ascii tables instead of sql queries as table information in
fact you do not actually need a MySQL database anymore to work with mpmasql), still experi-
mental

• the introduction of block comments /* */ to comment whole sets of lines

• syntax highlighting in the gedit editor

• improved structure of input files, more logical distribution of entries over files

• better naming for some entries

• special ordered integer sets in the matrix

• improved functionality in mqlmatrix

• the possibility to use ASSET_ENDOWMENT information for MPMAS to create right hand sides
for single farm analysis

• mpmasdist, a tool to create agent populations

However, all of this comes with some major costs, you actually have to do some major changes to
your input files and the old manual and tutorial are outdated. I will rework the documentation and files
in the next days. This document already provides an overview of the changes you have to make in
order to use mpmasql 2.0.

To update to mpmasql version 2.0, you have to do the following changes in your mpmasql input files:

151

Table D.1: Version History
mpmasql Date MPMAS executable Default Input Dataset

2.52 13 Aug 2014 3.3.244 DEF241
2.48 13 June 2014 3.3.230 DEF241
2.47 08 May 2014 3.3.223 DEF240
2.40 21 Feb 2014 3.3.215 DEF239
2.39 12 Dec 2013 3.3.210 DEF239
2.38 11 Dec 2013 3.3.210 DEF239
2.36 17 Sep 2013 3.3.204 DEF238
2.34 8 Aug 2013 3.3.196 DEF237
2.33 5 Aug 2013 3.3.194 DEF236
2.32 30 Jul 2013 3.3.193 DEF235
2.28 6 May 2013 3.3.186 DEF233
2.27 26 March 2013 3.3.180 DEF229
2.26 24 March 2013 3.3.180 DEF229
2.23 30 January 2013 3.3.167 DEF224
2.22 16 January 2013 3.3.160 DEF222
2.19 15 November 2012 3.3.143 DEF217
2.14 4 September 2012 3.3.137 DEF209
2.12 16 July 2012 3.3.136 DEF209
2.10 04 July 2012 3.3.135 DEF207
2.08 10 May 2012 3.3.134 DEF206
2.06 26 April 2012 3.3.130 DEF206
2.05 20 April 2012 3.3.130 DEF205
2.04 03 April 2012 3.3.130 DEF204
2.02 26 March 2012 3.3.128 DEF202
2.00 03 March 2012 3.3 DEF200

1.05 beta 22 Feb 2012 3.3 DEF200
1.04 beta 12 Jan 2012 3.3 DEF192
1.03 beta 9 Dec 2011 3.1 DEF182
1.02 beta 16 Nov 2011 3.1 DEF176
0.97 beta 9 June 2011 3.1 DEF169
0.94 beta 23 May 2011 3.1 DEF164
0.93 beta 20 May 2011 3.1 DEF164
0.90 beta 10 May 2011 3.1 DEF161

0.88 alpha 15 Feb 2011 3.0 DEF155
0.87 alpha 21 Dec 2010 3.0 -
0.86 beta 03 Dec 2010 3.0 -
0.85 beta 30 Jun 2010 3.0 DEF152 (2010-06-18/Linux)

0.84 alpha 15 Feb 2010 3.0 DEF141 (2010-02-15/Linux)
0.82 alpha 24 Sep 2009 3.0 DEF128 (2009-05-24/Linux)

152

D.2.1 Conversion control file (.ini)

1. Rename the following entries:

(a) CONFIG → CONFIGURATION
(b) CLASSES → STRUCTURE
(c) VARIABLES → DATA

2. Adapt the SCENLIST, SCENDEF, RHSLIST, RHSDEF entires to the new table format

(a) For SCENDEF you now have two options (apart from leaving it empty):

i. SCENDEF =(sql) { "SQL SELECT statement which can also

span over several lines" }

ii. (but still experimental):

SCENDEF =(ascii) { "name of an ascii file with tab

separated values" }

(b) For RHSDEF you have the same options as for SCENDEF plus a third one:

i. RHSDEF = (transform_assets)

If you use this option, the RHS is directly created from the ASSET_ENDOWMENT, HOUSE-
HOLD_COMPOSITION and AGENT_INFO tables (in the .var file, see below), and the soil
RHS is either directly read from MP-MAS input maps ,if you specify the map directory in
the control file:

RHS_MAPDIR = directory

, or alternatively read from a table specified in the control file:

RHS_SOILTAB = (sql) {"SQL SELECT statement which can also

span over several lines"}

(c) For SCENLIST and RHSLIST you have three options (apart from leaving them empty):

i. SCENLIST = (sql) { "SQL SELECT statement which can also

span over several lines" }

ii. but still experimental:

SCENLIST = (ascii) { "name of an ascii file with one entry

on each new line" }

SCENLIST = (list) {[list of comma -separated values]}

D.2.2 Configuration file (.cfg)

iii.1. Rename the following entries if you are using them:

(a) MAXSOLVETIME → OSL_MAXSOLVETIME
(b) MAXITERATE → OSL_MAXITERATE
(c) MAXNODES → OSL_MAXNODES
(d) (there is an additional entry OSL_SKIPMODE1, which skips mode 1)

153

2. A whole number of entries will be moved out of the configuration file and into the new [MPMAS
PARAMETERS] and [MPMAS TABLES] section in the data file (.var). Everything which is a table
has to go to [MPMAS TABLES]. Everything which is can be considered model configuration (like
start year, submodel switches, osl control, number of soils, populations, type of consumption,
type of diffusion) will remain in cfg. Everything which is rather a model parameter (like interest
rates, liquidity, leverage, overlap) should go to [MPMAS PARAMETERS], although the later
would still work if they remain in the configuration file. (Tables won’t work in cfg anymore). More
detail is provided in the section on .var below.

3. In case you used an external crop growth model, the XNTABLE and XNYIELDCHANGE have
been replaced by the attribute group #externalcropgrowth>, to be implemented in .cll

D.2.3 Data file (.var)

1. The data file now has six sections:

(a) [GLOBALS]
(b) [MPMAS PARAMETERS]
(c) [MPMAS TABLES]
(d) [USER TABLES]
(e) [USER VARIABLES]
(f) [INSTANCES]

Please rename TABLES → USER TABLES and VARIABLES → USER VARIABLES, and intro-
duce the [MPMAS PARAMETERS] and [MPMAS TABLES] sections. The [ORDER] section is
moved to the structure file (.cll) and reformated (see below)

2. Reformat your user tables. The new format is:

tablename = (tabletype , number of keys) { MpmasQL Function

Language that results in an

SQL statement and can span several lines

}

e.g.:

ofert = (sql ,1) {" SELECT goods_code , 1 FROM tbl_consumables

WHERE goods_code IN (" ~ #qlist(ORGANICFERT) ~")" }

or, same thing, but more readable:

ofert = (sql ,1) {

"SELECT goods_code , 1

FROM tbl_consumables

WHERE goods_code IN (" ~ #qlist(ORGANICFERT) ~")" }

3. Move all tables from the configuration file into the new [MPMAS TABLES] section and adapt
them to the new format. Important!: as these tables have a predefined structure you must not
specify the number of keys.
The following tables have to be renamed:

(a) DEMOTAB → HOUSEHOLD_DYNAMICS
(b) SEXAGECAT → HOUSEHOLD_MEMBER_TYPES
(c) ASSETENDOW → ASSET_ENDOWMENTS
(d) HOUSEHOLDENDOW → HOUSEHOLD_COMPOSITION

154

(e) AGENTINFO → AGENT_INFO
(f) ASSETCDF → ASSET_CDF
(g) HOUSEHOLDCDF → HOUSEHOLD_CDF

So e.g. if this was before in your .cfg:
SEXAGECAT = #sql(" SELECT code , kind , sex , lowage , upage FROM

tbl_MASsexagecat ")

it should now look like this in your .var:
HOUSEHOLD_MEMBER_TYPES = (sql) {" SELECT code , kind , sex , lowage ,

upage FROM tbl_MASsexagecat "}

or like this would also work:
HOUSEHOLD_MEMBER_TYPES = (sql) {

"SELECT code , kind , sex , lowage , upage

FROM tbl_MASsexagecat"

}

4. Move all non-table entries, which you deem model parameters, rather than model configuration
from .cfg to .var [MPMAS PARAMETERS]. This is optional and rather cosmetic in nature, to
mpmasql it does not matter whether entries are in cfg or .var [MPMAS PARAMETERS], but I
consider this more logical if we have a configuration and a data file. So in my thinking, configura-
tion is for thinks that activate submodels, debugging features or provides information on number
of soils, populations etc, while parameters is everything that is directly used during simulation
of processes, like interest rates, consumption shares etc.

D.2.4 Model structure file (.cll)

1. First a good message, I have programmed syntax highlighting for .cll files So after installing
mpmasql you should now be able to choose View->Highlight Mode->mpmasql->mpmasql(cll)
in gedit (maybe you have to close gedit, and reopen it after installing) An have a nicely colored
and better readable cll syntax.
Also, try Edit->Preferences->View->Highlight matching brackets, very helpful.

2. The model structure file is now also subdivided into sections, which are as follows:

(a) [ACTIVITY TYPES]
(b) [CONSTRAINT TYPES]
(c) [DEFAULTS]
(d) [MODEL]

3. Move the [ORDER] section from the .var file here and adapt it to the new format.
If it looked like this in your .var file before:
[ORDER]

ACTTYPEORDER = grow , hire , default

CONTYPEORDER = balance , default

It should now look like this in your .cll file:
[ACTIVITY TYPES]

grow , hire , default

[CONSTRAINT TYPES]

balance , default

155

4. The [DEFAULTS] section replaces the default class. The default class is now read from /etc/mp-
masql/default.cll, and you only need to include entries into the defaults section in case you want
to change default setting compared to the settings in /etc/mpmasql/default.cll. You only need to
specify those settings, which you want to change and you must not put a #class DEFAULTS
around it anymore. E.g. if you would like to make all activities integer activities by default and
set the default priority to 100, you’re DEFAULTS section would look like this:

[DEFAULTS]

#activity activity {

integ #= 1

priority #= 100

}

If you do not want to specify any customary default settings, you can omit the whole section.

5. The [MODEL] section contains the rest of the .cll file as it was before, however there have been
some major changes to the syntax, and you will need to adapt your code:

6. Networkobjects are now called assets so change all #networkobject to #asset

7. For performance reasons #thisinst, #thisby and #thisfor[] have been replaced by a generic
#this() function. So please change:

(a) #thisinst → #this(instance)

(b) #thisby → #this(by,0)

(c) #thisfor[1] → #this(field,1)

(You can now also refer to parts of the by specification that resulted from #tables or #foreach,
if you choose a number higher than 0, zero, gives you the whole construct. You can now also
refer to the full field name by using #this(field, 0).

8. The #this() function is a function and not a local variable anymore, so it cannot be included
into strings. So, something like

"Growing #thisinst on soil #thisby"

will have to become

"Growing " ~ #this(instance) ~ " on soil " ~ #this(by ,0)

9. A small change: the format of the result group feature has now been made consistent with other
subelements, and uses a > ate the end
So instead of

#resultgroup crop #= #table(process ,2,[# this(instance)])

you now have to write:

#resultgroup > crop #= #table(process ,2,[# this(instance)])

10. In case you knew and used the sign to get debugging output, this has now become obsolete.
It is replaced by a new #report() function.
The syntax is

#report(id, condition , arguments to report , ...)

id is an id you can freely choose, it is meant to avoid confusion if you use several reports
condition report is only written to screen if condition is true so you can e.g. restrict it to certain

buggy instances

156

The report function returns all except the first two arguments to the expression, so the actual
calculation is not affected, even if you put it inside an expression.
Examples:
orow #= #report (#this(instance),1, -1 * #table(prices ,

2,[#this(instance)]))

→ prints the result for the field orow for every instance of the class on the screen and each
report is identified by the instance id
orow #= #report(test ,#this(instance) == 24, -1 *

#table(prices , 2,[#this(instance)]))

→ prints the result for the field orow for instance 24 onto the screen and the report is identified
as test
orow #= -1 * #report(test ,#this(instance) == 24,

#table(prices , 2,[#this(instance)]))

→prints the value read from the table for instance 24 onto the screen and the report is identified
as test

D.3 Changes in 2.03

• Corrections for perennials and livestock

• Introduction of OSL mode 4 (added necessary entries to model configuration)

• mpmasqlnow creates stata import scripts automatically (added necessary entries to control file)

• Implemented interface for -P flag to choose map locations

D.4 Changes in 2.04

• Special country model switch Germany (5) with new asset field available_until_period.

• bug fixes livestock and perennials

• implemented automatic creation of R import scripts

• renamed THIRDMILP to HARVEST_DECISION

• revised external crop growth interface

D.5 Changes in 2.08

• efficiency improvements, bug fixes and error checking mpmasdist, livestock, manual

D.6 Changes in 2.10

• change matrix coefficients over time (#exchange>)

• example models

• error correction in tutorial model in manual

• bug fixing

157

D.7 Changes in 2.12

• New naming convention MpmasExe -> mpmas

D.8 Changes in 2.14

• bug fixes

• --runonly option

D.9 Changes in 2.16

• bug fix: livestock model, replaced EE sign for total endowment by LE

D.10 Changes in 2.19

• bug fixes: mostly related to advanced consumption model and R scripts

• introduced artificial maps and cluster, etc. maps into mpmasdist

D.11 Changes in 2.20

• bug fixes: mostly related to advanced consumption model, livestock, and R scripts

• country model Germany: min/max age and inflation rate correction for assets at simulation start

• Result handling: partitioning of TGM into user-defined accounts

• Revision of advanced consumption model:

– removed disinvestment and extra-consumption related activities and constraints from con-
sumption class

– add energy deficit constraints, deficit transfer and deficit penalty, including table utility_penalty

• updated R import to new p-File output

• advanced demography model

D.12 Changes in 2.21

• investment horizon component for advanced demography model

• income balance for advanced demography model

158

D.13 Changes in 2.22

• applied corrections for advanced consumption model

– revised MASCONSUMPTION and MASSTANDARD classes
– new user variables needed (see Section 4.4.2).

D.14 Changes in 2.23

• implemented change of coefficients between production and consumption LPs (“fine tuning pa-
rameters”)

D.15 Changes in 2.24

• implemented the several markets feature

D.16 Changes in 2.26

• bug fixes

D.17 Changes in 2.27

• bug fix in mpmasdist

• Advanced consumption model:

– MASTANDARD activity stcredit_taken , set consfix to 1
– MASTANDARD activity stcredit_defaulted , relaxing of stcredit_balance only in #harvest>
– MASCONSUMPTION constraint xc_fnf_funcc set eqtype = 3

D.18 Changes in 2.28

• introduced the STANDARD_LAND_RENTS table.

D.19 Changes in 2.32

• introduced quadratic programming problems, plus bug fixes

D.20 Changes in 2.33

• compatibility for mpmas 3.3.194

159

D.21 Changes in 2.36

• compatibility for mpmas 3.3.204, mostly changes to Germany model and bug fixes quadratic
programming

• extended mqlmatrix, improved quadratic programming interface

D.22 Changes in 2.39

• implemented BIOVERSION 4

• sorting of LandUseActivityIDs by LP Column

• Debugging output for Expert-N coupling

D.23 Changes in 2.40

• implemented producer organizations

• bug corrections (multiple markets)

D.24 Changes in 2.41

• implemented user variables in the scenario list and definition of the .ini file and –set flag for
mpmasql

D.25 Changes in 2.47

• bug fixes

• activated exogenous yield expectations for country switch Peru

• added feature to add agent attributes to matrix (only country switch Germany)

D.26 Changes in 2.48

• bug fixes

• landscape cell attributes to matrix

• custom NRU grouping of soils

• disinvestment of assets (except perennials, only Germany)

• household member attribute

160

D.27 Changes in 2.52

• bug fixes

• land market parcel group version

• gross investments in p-File

161

	Titlepage
	Contents
	Installation
	Overview
	Model design with mpmasql: A basic MPMAS model
	Folder structure
	Control file
	The model configuration
	The landscape
	The agent population
	Farmsteads and land ownership
	Populations, clusters and networks
	Household members, and the dynamics of aging and labor provision
	Money, machinery and other farm assets

	Production and investment decisions
	Crop production, soils and yields
	Liquidity needs
	Labor use
	Machinery use
	Investments
	Hiring machinery

	Running the model
	Creating the MPMAS input files with mpmasql
	Running MPMAS

	Scenarios
	Output analysis
	Defining output variables
	Importing results into stata
	Importing results into R
	Transforming results into text files/databases

	Model design with mpmasql: MPMAS submodels and features
	Perennial crops
	Livestock
	Crop growth models
	CropWat
	External crop growth models
	Exogenous yield time series
	Adaptation of production decisions after harvest
	Yield expectations for crops not grown

	Consumption
	Basic consumption model
	Advanced three-stage consumption model

	Harvest decision
	Hydrology
	EDIC: Sector-based Hydrology

	Fine-tuning of OSL solver
	Quadratic Problems
	Example starting from a scalar valued function
	Example for quadratic risk programming

	Exogenous changes to matrix coefficients and agent-independent right hand sides
	Fragmented markets: differentiate prices or LP coefficients between different groups of agents
	Producer organizations
	The producer organization
	The farm agents' marketing decision
	Linking farm agents and producer organizations

	Diffusion of innovations
	Defining the number of segments and its thresholds
	Defining innovations
	Defining availability and accessibility of innovations
	Assigning agents to networks and segments
	Fine-tuning the diffusion process

	Using agent attributes in the decision problem
	Using plot attributes in the decision problem
	Household member-specific attributes
	Selling of assets

	Testing decision models with mpmasql and mqlmatrix
	Interactive commands
	Formats of MP problems
	MPMAS input format (.dat)
	MPMAS standalone MP problem format (.mtx)
	MP problems automatically saved by mpmas for debugging
	MP problems saved by mpmas for debugging on request

	Indicating the location of the model info files
	mqlmatrix.conf

	Preparing agent populations with mpmasdist
	File structure
	DB
	VARIABLES
	TABLES
	MAPS
	CONTROL
	DISTRIBUTION

	Generating, removing, saving and importing agents
	Generating agents
	Removing agents
	Saving agent populations
	Restoring agent populations

	Defining and manipulating attributes and assets
	Setting and using attributes
	Removing attributes
	Assigning assets and household members

	Distribution algorithms for attributes, assets and household members
	Distributing a list of observations
	Assignment following a probability distribution

	Spatial distribution
	Quick maps
	More realistic maps
	Making population, cluster, network, sector and catchment maps

	Varying agent populations

	References
	Command line options
	mpmasql
	mqlmatrix
	mpmasdist
	mpmas

	mpmasql file reference
	Control file
	Model configuration
	Model data file
	[GLOBALS]
	[MPMAS PARAMETERS]
	[MPMAS TABLES]
	[USER TABLES]
	[USER VARIABLES]
	[INSTANCES]

	Model structure file
	[ACTIVITY TYPES] and [CONSTRAINT TYPES]
	[DEFAULTS]
	[MODEL]

	mpmasql function language
	Numbers and Strings
	Operators
	Arrays
	Functions

	Version history and changelog
	Version History
	Changes from version 1.03 to 2.00
	Conversion control file (.ini)
	Configuration file (.cfg)
	Data file (.var)
	Model structure file (.cll)

	Changes in 2.03
	Changes in 2.04
	Changes in 2.08
	Changes in 2.10
	Changes in 2.12
	Changes in 2.14
	Changes in 2.16
	Changes in 2.19
	Changes in 2.20
	Changes in 2.21
	Changes in 2.22
	Changes in 2.23
	Changes in 2.24
	Changes in 2.26
	Changes in 2.27
	Changes in 2.28
	Changes in 2.32
	Changes in 2.33
	Changes in 2.36
	Changes in 2.39
	Changes in 2.40
	Changes in 2.41
	Changes in 2.47
	Changes in 2.48
	Changes in 2.52

