Optimum choice of tester

Dr. Friedrich Longin

State Plant Breeding Institute University of Hohenheim, Germany Friedrich.longin@uni-hohenheim.de

Outline

ALL RANK REPARTMENT OF THE PART OF THE PAR

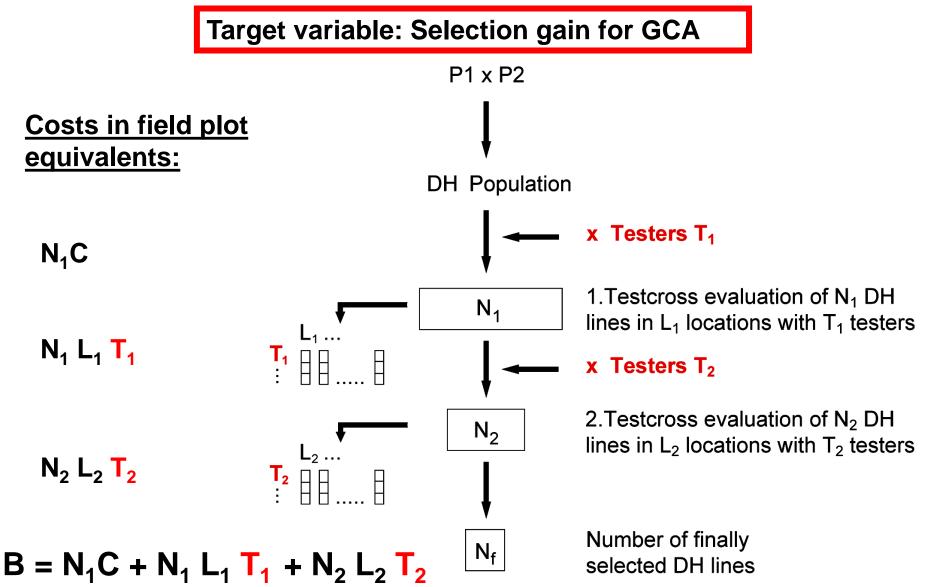
- Assumptions on economic frame
- Use of broad versus narrow tester
- Optimum number of testers in two-stage sleection
- Evalute progenies of each tester at each location? Or alternatively evaluate each tester only in a single location?

- Logistic assumptions
 - 10 DH lines can be produced from a single S1 (250 kern.)
 - 1 multiplication of DH lines needed to have sufficient seed for *perse* test, isolation with tester, and further multiplication
 - Two row trials on testcross performance with 33 plants per row (sowing of 55 kernels per row)
- Economic assumptions
 - Costs for producing one DH line = 8 Euro
 - Costs for one testcross plot with two rows = 15 Euro
 - Costs for one isolation row with 20 plants = 10 Euro
 - Costs per hand selfing / crossing = 0.6 Euro
 - Costs for one observation row (not harvested) = 6 Euro
 - Equal costs in summer and winter season

Economic frame and quantitativegenetic parameters

- Standard scenario: (Longin et al. 2006)
 - Budget: B = 1000 field plots for one population
 - Ratio of variance components with

VC = 1 : 0.5 : 0.5 : 1 : 2 (Gordillo and Geiger 2004) $\sigma_g^2 : \sigma_{gy}^2 : \sigma_{gl}^2 : \sigma_{gly}^2 : \sigma_e^2$


- Ratio of GCA to SCA variance: (Schrag et al. 2006)

$$\sigma_{SCA}^2 = 0.5\sigma_{GCA}^2$$

- Abbreviations:
 - L : number of test locations
 - N : number of DH lines
 - C : extra costs for producing doubled haploid (DH) lines defined in field plot equivalents
 - T : number of testers

Two-stage testcross selection

The optimum type of testers

Optimum allocation of test resources and selection gain (Δ G) for varying tester type (2W = single-cross, 8W = double-double cross) assuming V_{SCA} = 0.5 V_{GCA}.

Tester type								
Stage 1 Stage 2		T ₁	T ₂	L ₁	L ₂	N ₁	N ₂	ΔG
Inbred	Inbred	1	3	2	5	238	27	100%
W 8	8W	1	1	2	12	253	31	1 09.5%
2W	Inbred	1	3	2	5	246	26	101.7%
2W	Inbred	3 ^a	14	3	14	191	24	108.7%
2W	Inbred	3 ^a	2	3	7	200	21	103.4%

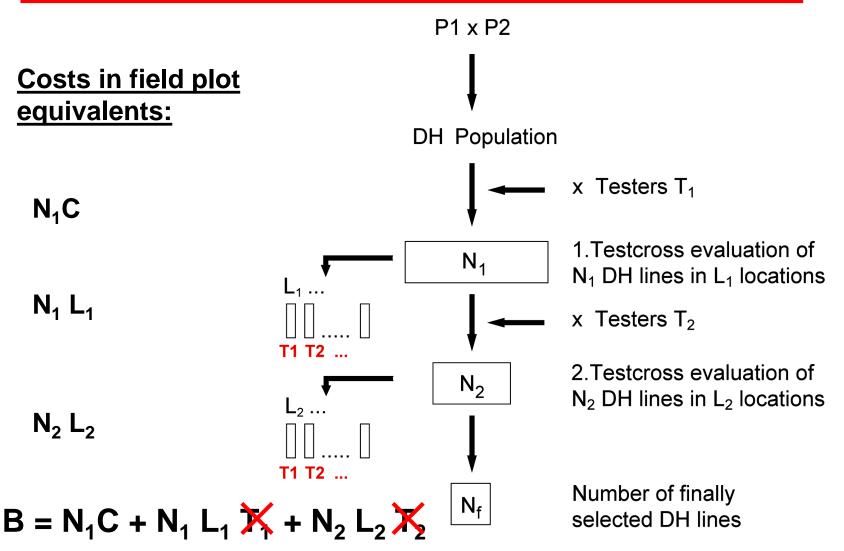
^a Each tester evaluated only in a single location

The broader the genetic base of a tester, the higher is the selection gain for GCA.

The optimum type of testers

Optimum allocation of test resources and selection gain (Δ G) for varying tester type (2W = single-cross, 8W = double-double cross) assuming V_{SCA} = 0.5 V_{GCA}.

Tester type								
Stage 1	Stage 2	T ₁	T ₂	L ₁	L ₂	N 1	N ₂	ΔG
Inbred	Inbred	1	3	2	5	238	27	100%
8W	8W	1	1	2	12	253	31	109.5%
2W	Inbred	1	3	2	5	246	26	101.7%
2W	Inbred	3 ^a	14	3	14	191	24	108.7%
2W	Inbred	3 ^a	2	3	7	200	21	103.4%


^a Each tester evaluated only in a single location

Practical concerns might limit the use of broad testers to stage one, but still about 2 % advantage in selection gain

Modified two-stage testcross selection

Optimum allocation of test resources and selection gain (Δ G) for varying tester type (2W = single-cross, 8W = double-double cross) assuming V_{SCA} = 0.5 V_{GCA}.

Tester type Stage 1 Stage 2								
		T ₁	T ₂	L ₁	L ₂	N ₁	N ₂	ΔG
Inbred	Inbred	1	3	2	5	238	27	100%
8W	8W	1	1	2	12	253	31	109.5%
2W	Inbred	1	3	2	5	246	26	101.7%
2W	Inbred	3 ^a	14	3	14	191	24	108.7%
2W	Inbred	3 ^a	2	3	7	200	21	103.4%

^a Each tester evaluated only in a single location

The evaluation of progenies of each tester only at a single location increases selection gain for GCA.

Optimum allocation of test resources and selection gain (Δ G) for varying tester type (2W = single-cross, 8W = double-double cross) assuming V_{SCA} = 0.5 V_{GCA}.

Tester type Stage 1 Stage 2								
		T ₁	T ₂	L ₁	L ₂	N ₁	N ₂	ΔG
Inbred	Inbred	1	3	2	5	238	27	100%
8W	8W	1	1	2	12	253	31	109.5%
2W	Inbred	1	3	2	5	246	26	101.7%
2W	Inbred	3 ^a	14	3	14	191	24	108.7%
2W	Inbred	3 ^a	2	3	7	200	21	103.4%

^a Each tester evaluated only in a single location

Practical concerns might limit the use of broad testers to stage one, but still about 2 % advantage in selection gain

Summary – type and number of tester

- Testers with broad genetic base increase selection gain on GCA
- Applied breeding requires compromises
 - First stage: use single- or double-cross testers and evaluate their progenies only in a single location
 - <u>Second stage</u>: use inbred testers and evaluate their progenies in all locations