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LARGE-EDDY SIMULATION OF THE DAYTIME BOUNDARY LAYER AND HEAT
TRANSFER PROCESSES OVER AN IDEALIZED VALLEY

Jürg Schmidli (jschmidli@env.ethz.ch)

Introduction and Motivation
• Transport and mixing of heat, moisture and other con-

situents over complex terrain determined by evolution of
mountain boundary layer, its turbulence and associated
thermally-driven flows

• Quantifying these processes important for many applica-
tions such as initiation of deep convection, air pollution
studies, or parameterization in coarse-resolution models

• Mechanisms governing heating of valleys not clear. Role
of valley volume effect and subsidence heating debated
in recent literature (e.g. Rampanelli et al., 2004; Schmidli
and Rotunno, 2010; Serafin and Zardi, 2011)

Objectives
• Clarify role of volume effect and subsidence
• Quantify heat transfer associated with mean flow

(thermally-driven circulations) and turbulence
• Key principles of heat transfer in stratified fluids?

Experimental setup
LES simulation
• 2D valley: width 20 km; depth 1.5 km; length: 9.6 km
• Atmosphere at rest with ∂θ

∂z = 3 K km−1

• Constant shortwave forcing SWd = 400 W m−2

• Deardorff-type TKE closure (Deardorff, 1980)
with SGS length scale l0 = ∆x

• Monin-Obukhov surface layer with z0 = 0.16 m
• Domain: 40 km×9.6 km×5 km
• Grid: ∆x = ∆y = 50 m; ∆z = 8 . . . 20(50) m
• 6 hours integration
• Double periodic lateral BCs
• Model: ARPS Version 5.2.12+

Surface sensible heat flux forcing
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Reynolds flow decomposition
• Perturbation a defined as

a(x, t) = ã(x, t)− A(x, t)

• Average A = ã defined as

A(x, t) =
1

TLy

∫ t+T/2

t−T/2

∫ Ly

0
ã(x, y′, z, t) dy′ dt′

with T = 40 min and Ly = 9.6 km.

• Covariances and turbulent fluxes

ãb̃ = AB + ab

= mea + trb
= mea + trb_r + trb_s

• Example: Decompositon of cross-valley wind (20m AGL)
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• Results are shown for time = 4 h.
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Flow evolution

Instantaneous flow fields and hourly potential temperature profiles

θ′ w′ and e Valley center Mountain ridge
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Figure 1: Horizontal cross sections at 40 m AGL (upper panels) and west-east cross sections at y = 5 km (lower panels).

First- and second-moment statistics
Mean flow (W ) TKE Heat flux wθ Momentum flux uw
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Figure 2: Cross sections of flow statistics, potential temperature (0.5 K interval), boundary layer height (thick solid line), and mixed layer height (dashed line).

Local perspective on valley heating
Decompose temperature tendency into mean and turbulent component

∂Θ

∂t︸︷︷︸
net

= −V · ∇Θ︸ ︷︷ ︸
mea

−v · ∇θ︸ ︷︷ ︸
trb

net: ∂Θ
∂t mea: V · ∇Θ trb: v · ∇θ
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Figure 3: Cross sections of temperature tendencies (10−3 K/s).

⇒ Top-down warming by advection (in stable part) and bottom-up warming by turbulence (in mixed layers).

Bulk perspective on valley heating
Heat budget for valley control volume
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= − 1

M

∫
∂V

ρVΘ · n dS︸ ︷︷ ︸
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− 1
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1
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shf

Advective heat flux through top control surface using heat flux ρVΘ̂∫
A
ρVΘ̂ dA =

∫
A
ρVΘ dA

with perturbation temperature Θ̂ = Θ− θ0 where θ0 = 1
A

∫
AΘ dA

⇒ Avoid large compensating fluxes!
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Figure 4: Time series of heat budget components averaged over valley volume (left) and cross-valley variation of corresponding heat fluxes through the valley top.

⇒ Downward heat flux associated with subsidence is overcompensated by upward heat flux over ridge.

Conclusions
• Volume effect is main cause of valley-plain temperature contrast — no additional warming due to subsidence
• Although slope winds induce local subsidence heating in valley core, their net bulk effect is to cool the

valley atmosphere
• Heat transport in stratified fluids differs fundamentally from that of other quantities
→ use perturbation temperature for budget considerations (compensating fluxes)
→ budget analysis: always consider entire volume, not just one branch of flow (“remote effects”)
• Clearly separate local and bulk perspectives — local concepts are not applicable to volume arguments


