

Bayreuth Center of Ecology and Environmental Research

8th COPS Workshop and CSIP Meeting, Cambridge, Oct. 26-28, 2009

Numerical Simulation of localized Boundary Layer Circulations affecting the Measurements of the Energy Balance Network during COPS

BJÖRN BROETZ¹ and RAFAEL EIGENMANN² presented by THOMAS FOKEN²

¹University of Mainz, Institute of Atmospheric Physics ²University of Bayreuth, Department of Micrometeorology

Bayreuth Center of Ecology and Environmental Research

Content

- Energy Balance Closure
- Free Convection from the Ground
- LES Modeling

Bayreuth Center of Ecology and Environmental Research

Energy balance closure problem

Foken and Oncley (1995), Mauder et al. (2006), Oncley et al. (2007), Mauder and Foken (2006), Foken (2008)

Bayreuth Center of Ecology and Environmental Research

The Problem

 The net radiation is always larger than the sum of the turbulent fluxes (sensible and latent) and the ground heat flux:

$$Q_s * \geq Q_G + Q_H + Q_E$$

• Typical residual are:

$$\frac{Q_G + Q_H + Q_E}{Q_s *} \cdot 100\% = 70...100\%$$

Bayreuth Center of Ecology and Environmental Research

Secondary Circulations found with LES Simulations for the LITFASS-2003 Experiment

2003/05/30, 12 UTC

© Kanda et al. (2004), for LITFASS-2003 Experiment, according to Uhlenbrock et al. (2004)

Bayreuth Center of Ecology and Environmental Research

www.bayceer.de

Secondary Circulations found with LES Simulations for the LITFASS-2003 Experiment

2003/05/30, 12 UTC

LITFASS-2003 experiment: Special Issue, Boundary-Layer Meteorology **121** (2006) 1 and BAMS **87** (2006), 775-786

Foken, T; Mauder, M; Liebethal, C; Wimmer, F; Beyrich, F; Leps, J-P; Raasch, S; DeBruin, H; Meijninger, WML; Bange, J: Energy balance closure for the LITFASS-2003 experiment, Theoretical and Applied Climatology, DOI: 10.1007/s00704-009-0216-8 (2009)

© Kanda et al. (2004), for LITEASS-2003 Experiment, according to Unienbrock et al. (2004)

Bayreuth Center of Ecology and Environmental Research

www.bayceer.de

Schematic Overview of the Generation of Secondary Circulations and the Energy Balance Closure

© Foken (2008)

Bayceer

Bayreuth Center of Ecology and Environmental Research

Energy Balance Closure

Fußbach (corn)

Hagenbuch (meadow)

Bayreuth Center of Ecology and Environmental Research

Turbulent Fluxes

Fußbach (corn)

Hagenbuch (meadow)

Bayreuth Center of Ecology and Environmental Research

Conclusion 1

- A heterogeneous landscape with typical heterogeneity scales of >> 100 m is a reason for secondary circulations and therefore an unclosed energy balance
- For a landscape, which is homogeneous in scales >> 100 m, the energy balance can be closed. Only for this case experiments and models have equal results.
- The secondary circulations are mainly caused by heterogeneities in the sensible heat flux: The residual is probably more a missing sensible heat flux than a missing latent heat flux.
- Models distribute the residual often according to the Bowen ratio: The models have to low sensible heat flux and to much latent heat flux or they are too cold and too wet.

Bayreuth Center of Ecology and Environmental Research

Conclusion 1

- A heterogeneous landscape with typical heterogeneity scales of >> 100 m is a reason for secondary circulations and therefore an unclosed energy balance
- For a landscape, which is homogeneous in scales >> 100 m, the energy balance can be closed. Only for this case
 experiments and models have equal results

Kracher, D; Mengelkamp, H-T; Foken, T: The Residual of the Energy Balance Closure and its Influence on the Results of three SVAT Models, Meteorologische Zeitschrift, **18**, in print (2009)

latent heat flux.

 Models distribute the residual often according to the Bowen ratio: The models have to low sensible heat flux and to much latent heat flux or they are too cold and too wet.

Bayreuth Center of Ecology and Environmental Research

Thermal Heterogeneity

Free convection in the surface layer (!) is given for

$$\zeta = \frac{z}{L} = -\frac{z \cdot \kappa \cdot g \cdot \left(\overline{w' \theta'_{v}}\right)_{0}}{\overline{\theta_{v}} \cdot u_{*}^{3}} < -1$$

 Conditions: Low wind velocity and/or high sensible heat fluxes, increasing height

Bayceer

Bayreuth Center of Ecology and Environmental Research

Free Convection found in Surface Flux Measurements

Poster B2

© Eigenmann et al. (2009) COPS, Kinzig valley

Bayceer

Bayreuth Center of Ecology and Environmental Research

www.bayceer.de

Free Convection found in Surface Flux Measurements

Low wind velocities during the change of the mountain-valley wind system

© Eigenmann et al. (2009) COPS, Kinzig valley

Bayreuth Center of Ecology and Environmental Research

Strong free Convection Events (Vertical Wind measured with Doppler-Sodar)

© Collier, University of Salford (Manchester), COPS experiment 2007

Bayreuth Center of Ecology and Environmental Research

Strong free Convection Events (Vertical Wind measured with Doppler-Lidar)

© Collier, University of Salford (Manchester), COPS experiment 2007

IOP 8b

Bayreuth Center of Ecology and Environmental Research

Conclusion 2

- In a heterogeneous landscape with typical heterogeneity scales of >> 100 m free convection can be generated near the surface
- Reasons are a decrease of the wind velocity (due to local circulation systems) or a heating up of the surface
- Under free convection situations flux measurements have a low data quality, which needs efforts in data quality control

Bayreuth Center of Ecology and Environmental Research

Atmospheric Scales

Bayreuth Center of Ecology and Environmental Research

Atmospheric Scales

Bayreuth Center of Ecology and Environmental Research

Atmospheric Scales

Bayreuth Center of Ecology and Environmental Research

Conclusion 3

- A heterogeneous landscape with typical heterogeneity scales of >> 100 m can be investigated with LES modeling
- Suitable measuring systems for flux measurements are scintillometers

Bayreuth Center of Ecology and Environmental Research

Application of a LES model

Bayreuth Center of Ecology and Environmental Research

Application of a LES model

Th

Bayreuth Center of Ecology and Environmental Research

Application of a LES model

Bayreuth Center of Ecology and Environmental Research

Conclusion 4

On the 9th COPS meeting

