Analysis of Convection Initiation Processes in Complex Terrain with the Synergy of COPS Remote Sensing Data

Andreas Behrendt, Sandip Pal, Marcus Radlach, Volker Wulfmeyer, Fumiko Aoshima, Hans-Stefan Bauer, Thomas Schwitalla

Institute of Physics and Meteorology, University of Hohenheim

Initiation of (Deep) Convection (CI)

Analyses ahead of COPS indicated that CI in complex terrain is mainly determined by

- the convergence and updrafts created by forced lifting on the windward side and thermally-forced anabatic flow,
- the wind shear profile in the region of the ridges,
- variations in the depth of the convective boundary layer as well as in moisture, convective inhibition (CIN), and convective available potential energy (CAPE) across the mountain ridges,

- the presence of gravity waves impinging on the ridges,
- aerosol loading in the pre-convective environment influencing the diurnal cycle of boundary variables.

How is CI handled by models? Cumulus Parametrization!

CI trigger function in mass flux convection schemes tests each grid point by • vertical velocity offset at LCL (= cloud base), Kuo 1965

 adding temperature offset depending on grid-scale vertical wind (large scale lifting supports CI), Fritsch and Chappel 1980

height depending threshold of temp. offset, Kain 2003

 shallow/deep convection depending on range between LCL and LNB of the perturbed case (=extend of subgrid-scale cloud) precip. is turned on; typically 3 km

Presently used CI trigger functions are justified <u>empirically</u>! Many modles trust on just a single parameter (e.g., COSMO with Tiedke 1989 uses offset to vertical wind only).

What do we need to investigate CI?

- 1. Accurate data, especially of water vapor (lesson from, e.g., IHOP_2002)
- \rightarrow Intercomparisons, higher-order corrections to reach better than 5 % accuracy

2. IOP case studies

 \rightarrow Investigate small scale heterogeneity of water vapor, temperature, wind, fluxes, boundary layer height, clouds, aerosols and their relation to CI

→ Combine simultaneous data of temperature and water vapor:

 $d\theta/dz$, $d\theta_v/dz$, buoyancy, CAPE, CIN

3. Comparison with different parameterization concepts

 \rightarrow D-PHASE, COPS-GRID re-analyses, and hybrid convection schemes

IOP 9c, 20 July 2009

- COPS IOP 9c: flooding, modification of front in Northern Black Forest, all COPS research instruments operated, "non-case" on Hornisgrinde
- -> perfect conditions to measure pre-convective fields with lidars
- New product: 5-minute Buoyancy profiles of collocated rotational Raman lidar (*T*) and water vapor DIAL (& ground met station)
- Precison (stat. uncertainty) directly obtained from the signal intensities
- Differences to drifting radiosondes?

Buoyancy B

Particles: UHOH Rotational Raman Lidar

dθ/dz : UHOH Rotational Raman Lidar

"Dry" Buoyancy: UHOH Rotational Raman Lidar

"Moist" Buoyancy: UHOH RRL & DIAL

What do we need to investigate CI?

- 1. Accurate data, especially of water vapor (lesson from, e.g., IHOP_2002)
- \rightarrow Intercomparisons, higher-order corrections to reach better than 5 % accuracy

