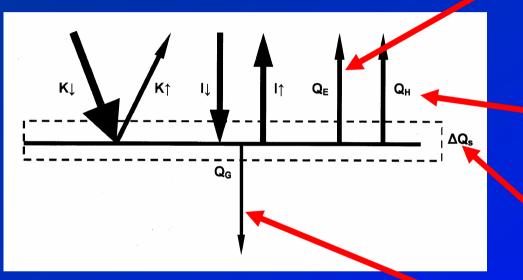


Set up of Turbulence Network

Thomas Foken

Department of Micrometeorology University of Bayreuth

University of Bayreuth Department of Micrometeorology Thomas Foken



- 1. Surface fluxes and convection
- 2. Experimental setup
- 3. Set up in the Kinzig valley
- 4. Applicable data

Surface fluxes and convection

Net radiation

Furthermore necessary: Surface layer Deardorff velocity

Latent heat flux (moist convection)

Sensible heat flux (thermal convection)

Storage

Soil heat flux & Soil moisture

Scaling of fluxes and convection

thermal
scalingdynamical
scalingSurface layer $T_* = -\underbrace{w'T_v}{u_*}$ u_* limit (5-50 m): $\frac{z}{L} = \frac{z \cdot K \cdot g \cdot T_*}{T_v \cdot u_*^2} \quad \langle -1$ Convective
layer $w_* = \left[\frac{g \cdot z_i}{\theta_v} \underbrace{w'\theta_v}{\theta_v}\right]^{1/3}$

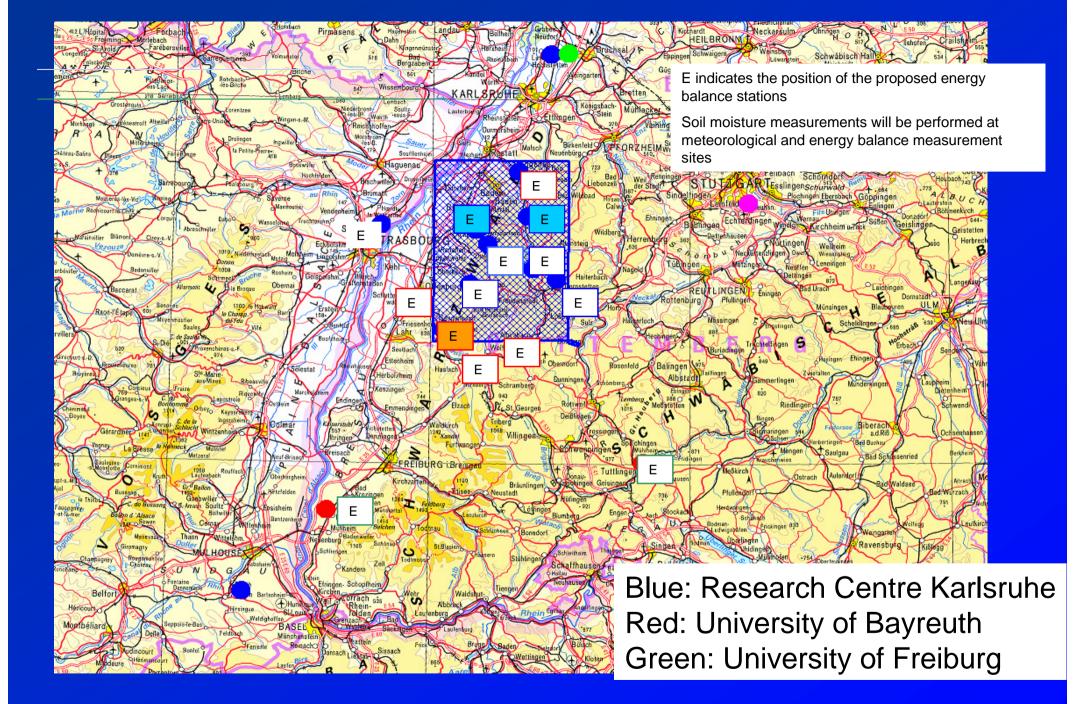
Remark 1: Coherent structures are already generated in the surface layer. There is a connection to such structures in the boundary layer. Remark 2: There is no remote sensing technique available to determine these parameters.

Experimental setup

Building up of at least 3 Main Sites at convection generating area's (2 in the valley, 1 in the mountains and single measurements in between)

- Sodar, energy balance and turbulent flux complexes of the Research Centre Karlsruhe
- Sodar-RASS, energy balance and turbulent flux complexes of the University of Bayreuth
- Permanent stations at Hartheim and Tuttlingen of the University of Freiburg
- Probable: 1 complex of an international partner

Planned set up

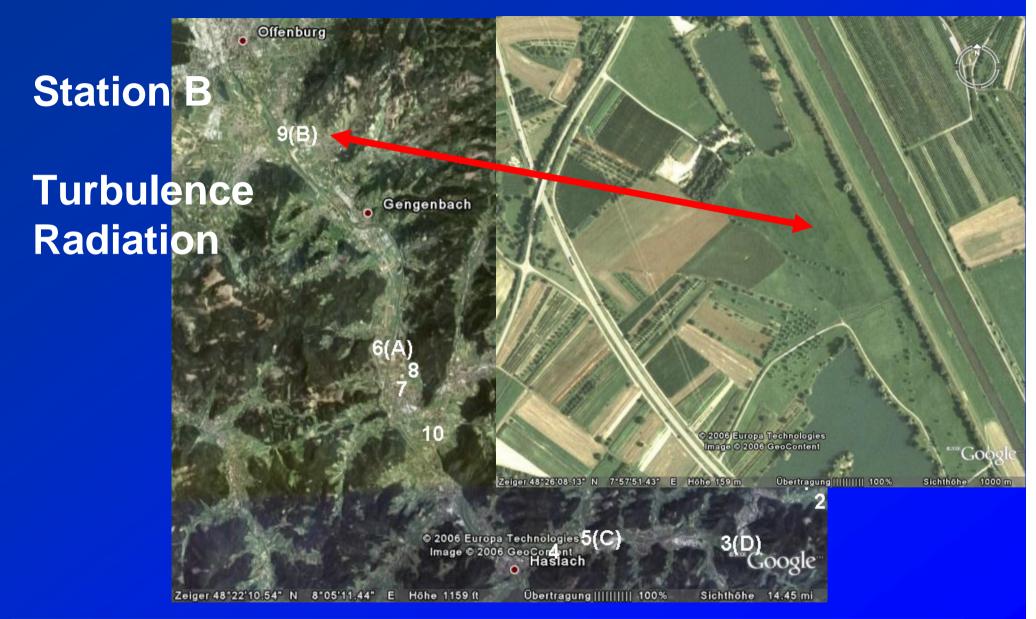

- Turbulence set up of the Research Centre Karlsruhe in the Northern Schwarzwald (Murg valley) and at the mountains (Hornisgrinde)
- Turbulence set up of the University of Bayreuth in the Middle Schwarzwald (Kinzig valley)
- Additional tower measurements of the University of Freiburg at Tuttlingen and Hartheim
- Additional measurements of an international partners

Criteria for the selection of the sites

- Wide of the valley with uniform land use approx. 300 - 500 m – generation of convection.
- Flat area (meadows, agricultural fields) of about 200 m with uniform land use – necessary for eddy-covariance measurements.
- No obstacles near the measuring field.
- Electric power
- For Sodar/RASS: no villages

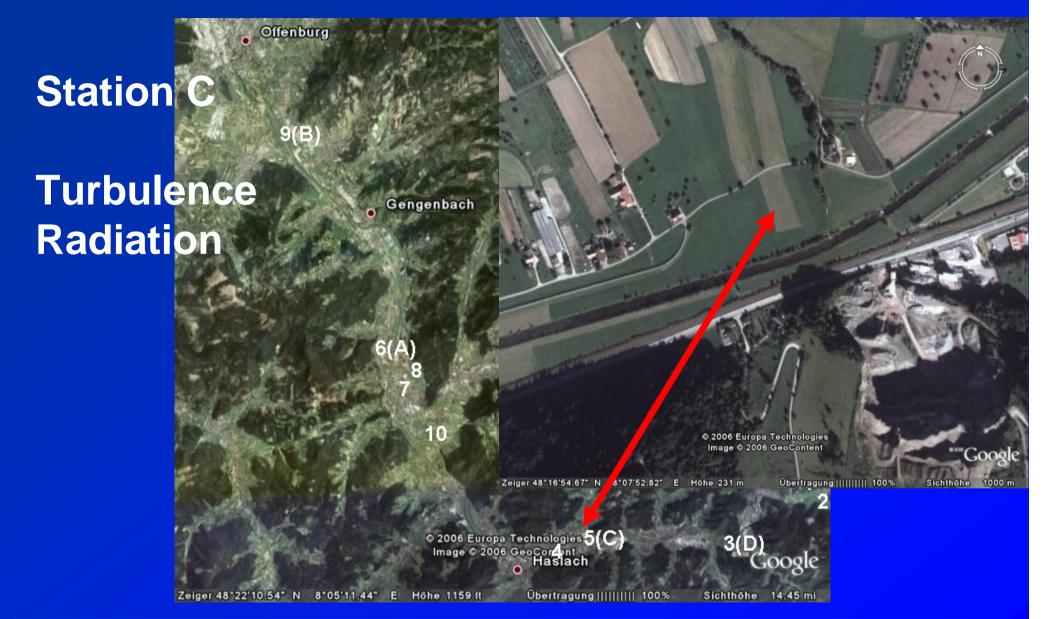
University of Bayreuth Department of Micrometeorology Thomas Foken

University of Bayreuth Department of Micrometeorology Thomas Foken


University of Bayreuth Department of Micrometeorology Thomas Foken

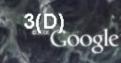
4th COPS Workshop, Hohenheim, 25-26 September 2006

University of Bayreuth Department of Micrometeorology Thomas Foken



University of Bayreuth Department of Micrometeorology Thomas Foken

University of Bayreuth Department of Micrometeorology Thomas Foken


Station **D**

Radiation Modified Bowen Ratio

Offenburg

9(E

© 2006 Europa Technologies 5(C) Image © 2006 GeoCordent Hasiach

Zeiger 48°22'10.54" N 8°05'11.44" E Höhe 1159 ft Übertragung || || 100% Sichthöhe 14.45 mi

University of Bayreuth Department of Micrometeorology Thomas Foken

Station D

Modified Bowen Ratio

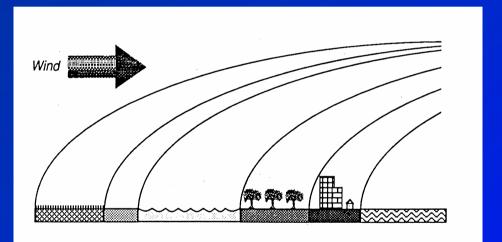
Offenburg

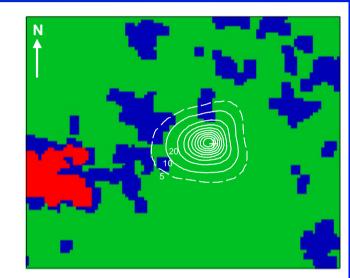
O 2006 Europa Technologies 5(C) Image © 2006 GeoCordont Haslach

Obertragung |||||||||||

100%

E Höhe 1159 ft


h


University of Bayreuth Department of Micrometeorology Thomas Foken

Quality Assurance and control

- Quality test according to Foken & Wichura (1996)
- Internal boundary layers

Simple Footprint

										130011			
sector in°	30 °	60 °	90°	120°	150°	180°	210°	240 °	270°	300°	330°	360°	
x in m	29	41	125	360	265	203	211	159	122	81	36	28	
ö in m	1.6	1.9	3.4	5.7	4.9	4.3	4.4	3.8	3.3	2.7	1.8	1.6	
		flux contribution from the target land use area in %											
stable	36	49	81	99	96	92	93	88	81	70	44	35	
neutral	51	63	90	100	100	98	98	95	90	82	59	50	
unstable	62	74	98	100	100	100	100	100	98	91	70	61	

Further data analysis (not within the funding period)

- Ogive test for longwave contributions of the fluxes (approx. 2-5 % increase of the turbulent fluxes)
- Contributions of Turbulent organized Structures and secondary circulations to the turbulent fluxes (approx. 20 % increase of the turbulent fluxes) – Energy balance closure problem
- Footprint analysis for each measuring seria
- Uniform data analysis for all measuring sites (comparability of the sites)

Conclusions

- The measurement of the surface energy parameters is an important part to understand the generation of convection and to generate initialization parameters for models.
- At the present time such measurements and calculation should be done according to the standards of recent experiments and programs.
- The data calculation and quality control incl. footprint analysis should be done according to the recent findings (by each group or central).

