Simulating orographic precipitation: Sensitivity to physics parameterizations and model numerics

2nd COPS-Meeting, 27 June 2005

Günther Zängl

Meteorologisches Institut der Universität München

Overview

- A highly idealized test of numerical model errors over steep topography
- Model sensitivities for a real case of orographic precipitation (MAP-IOP 10)

Part I: A highly idealized test of numerical model errors over steep topography (Zängl et al. 2004, Met. Z. 13, 69-76)

Setup:

- 1 domain with 1 km mesh size and 101 x 101 grid points;
 50 vertical levels up to 100 hPa
- 1500-m-high Witch-of-Agnesi mountain in center
- standard atmosphere temperature profile
- no large-scale winds, no radiation, no moisture
- integration time 24 hours
- sensitivity experiment with moisture and a convectively unstable temperature/moisture profile (Weisman and Klemp 1982)

Potential temperature and vertical wind speed after 24 hours, Standard-MM5 (version 3.6 or earlier)

Potential temperature and vertical wind speed after 24 hours, MM5 with truly horizontal numerical diffusion of temperature (available since MM5 v. 3.7)

(Zängl 2002, Mon. Wea. Rev. 130, 1423-1432)

Potential temperature and vertical wind speed after 24 hours, MM5 with "SLEVE" coordinate but diffusion along model surfaces

(Schär et al. 2002, Mon. Wea. Rev. 130, 2459-2480; Zängl 2003, Mon. Wea. Rev. 131, 2875-2884)

Potential temperature and vertical wind speed after 24 hours, LM

Maximum accumulated precipitation for sensitivity tests with moisture and convectively unstable atmosphere

Practical relevance:

Numerical errors can shift the initiation of orographic convection to earlier times

Part II: Model sensitivities for a real case of orographic precipitation (MAP-IOP 10)

(Zängl 2004, QJRMS 130, 1857-1875)

- Model: MM5
- 4 nested domains, finest horizontal resolution 1.4 km (see figure)
- 38 model levels in the vertical
- Initial / boundary data: Operational ECMWF analyses
- Period of simulation: Oct. 24, 00 UTC
 Oct. 25, 18 UTC
- Validation against 81 surface stations for Oct. 24, 06 UTC - Oct. 25, 18 UTC (see figure for location)

Test strategy:

Compare the spread among five different microphysical parameterizations against the effect of changing

- the convection parameterization in the coarse domains
- the soil moisture specification
- the PBL parameterization
- the vertical coordinate formulation
- the implementation of horizontal diffusion

36h-accumulated precipitation in the reference run

Boundary-layer parameterization (reference: Gayno-Seaman PBL)

Blackadar PBL

MRF PBL

Smooth-level vertical coordinate system

Implementation of horizontal diffusion

mm

Diffusion along sigma-levels for moisture and temperature

Conclusions

- The side effects of model numerics and PBL/convection parameterizations on simulated precipitation can be of the same order as (or even larger than) the spread among different microphysical parameterizations
- To improve forecasts of orographic precipitation, it is necessary
 - **1.** to ensure the absence of systematic numerical errors
 - 2. to consider the whole physics package of a model rather than focusing on a single parameterization