Links between QPF and hydrology

András Bárdossy University of Stuttgart

Introduction

- Rainfall/Runoff process non-linear
- Forecasting of:
 - Amount
 - Timing
 - Spatial distribution
- Uncertainty of the forecast
 - Ensembles
 - Subscale variability

Goals:

- To quantify the influence of the spatial variability of precipitation
 - To quantify the error variance of predicted discharge
 - To identify a possible bias
 - To see the effect of different model resolutions
 - To see the effect on parameter identification

Radar images

26.02.97 07:30 - 08:50

Gauge interpolation

Radar field

Methodology 1

- 30 years daily precipitation at 288 locations (1961-1990)
- Geostatistical analysis
 - Interpolation using EDK 1 km² resolution
- 3 catchments 454 , 693 and 1114 $\rm km^2$
- Hydrological modelling
 - Modified HBV (snow, soil, evapotranspiration)
 - 5 different spatial resolutions
 - Multiobjective calibration
 - Multiple time scales and weighting for maxima
 - Using interpolated precipitation
 - Period 1961-1970

Model resolution

Resolution	Average Block size (km ²)
R3	5.6
R6	19.2
R9	28.6
R12	55.7
R15	69.6

Effect of model resolution (Validation C3)

Effect of model resolution (Validation C1)

Methodology 2

- 30 years daily precipitation at 288 locations (1961-1990)
- Geostatistical simulation
 - Variogramm estimation for each day
 - Monotonisation algorithm (PAVA)
 - Automatic model fitting and validation (CR)
 - Conditional simulation of the EDK residuals using Turning Bands
 - Integration according to the selected resolution

Daily discharge vs. Standard deviation due to spatial uncertainty

Estimation error vs, Standard deviation due to spatial uncertainty

Modelling peak discharge (SC 3)

Results

- Models calibrated using interpolated rainfall yield
 - Biased estimator if used with spatially variable rainfall
 - 7%-10% in the mean
 - 5% for the maxima
 - The mean of the simulations is
 - worse if the whole period is considered
 - better if only floods are considered

than the model using interpolated rainfall

Conclusions

- Model resolution corresponding to
 - Processes
 - Available information (precipitation)
- Spatial variability of rainfall is partly responsible
 - for modelling errors
 - Problems in parameter estimation
- Spatial simulation is reasonable for flood forecasting
- Forecasting of spatial variability is very important