Mesoscale Raman Water Vapor Lidar Network Concept

David Whiteman, Belay Demoz, NASA/GSFC Eugenia Kalnay, University of Maryland, College Park XaXia Pu, University of Utah Volker Wulfmeyer, University of Hohenheim

Outline

Review current state of Raman water vapor lidar technology operational research systems (CARL) research systems (SRL, HURL) Calibration Daytime and nighttime error characteristics random error statistics Concept of a network of automated, eye-safe Raman water vapor lidars for mesoscale studies • cost

data assimilation activity

Raman Water Vapor Lidar Systems

U. S. DOE CART Raman Lidar (CARL)

- 0.6 m telescope (0.3 mrad FOV)
- 3.5 A water vapor filter
- UV (~10-12W) water vapor, aerosol, clouds
- Eye-safe, automated
- Operational since 1996
- Photon counting only requires signal attenuation during the daytime (currently being upgraded)
- NASA/GSFC Scanning Raman Lidar (SRL)
 - 0.75 m telescope (0.25 mrad fov)
 - 2.5 A filter
 - UV (~8-10W) water vapor, aerosol, clouds
 - Being converted to eye-safe, automated (expected spring, 2005)
 - Operational since 1991
 - But consistently upgraded
 - Photon counting and analog detection
 - No signal attenuation
 - ~x10 increase in water vapor signal

Southern Great Plains Lamont Oklahoma

Deployed in western Oklahoma for IHOP

Data Examples

CARL

• Three weeks of 10 minute resolution water vapor mixing ratio measurements

• acquired with 1/10 full water vapor signal in the daytime!

SRL

Dryline passage on May 22, 2002 during IHOP

~2 minute temporal and 60 –
200 m spatial resolution

Random Error

• Daytime: less than 10 % in boundary layer

 Nighttime: less than 10% to beyond 6 km

Raman lidar water vapor mixing ratio

June 19-20, 2002

Cirrus Cloud Ice Water Content and Particle size Retrievals

Wang et. al., GRL, August, 2004

Calibration and Intercomparison Results

- Absolute calibration is straightforward
 - Limited by cross section uncertainty (10%)
- SRL mobile calibration source (SuomiNet GPS) agrees within 2% of DOE ARM water vapor standard
 - Day and night IHOP calibration agree within 1%
- IHOP (2002) tropospheric profile comparisons
 - <5% mean bias with respect to LASE in lowest 4 km
 - <5% mean bias with respect to Chilled Mirror Hygrometer (SnowWhite) in lowest 6 km

30

Percentage Difference with CUCFH(%) 0 01-10

- AWEX (2003) upper tropospheric comparisons
 - Mean PW between 7km troposphere agrees within 2% of CU-CFH cryogenic frostpoint hygrometer
- Long-term stability
 - CARL calibration +/-3% over more than 1 year

RS90

-20

Data Assimiliation Study Dryline May 22, 2002

- Use data assimilation techniques to study the impact of different water vapor lidar systems on mesoscale modeling
- Use a high-resolution mesoscale model to "predict" the measurements of lidar systems
 - Scanning DIAL
 - Unprecedented precision, technology heading to space
 - Networked Raman
 - Much lower resolution, ground and airborne only
 - Automated, eye-safe, lower cost
- Nudge the initial conditions and rerun the model
 - Study how well different measurement systems constrain the model predictions

22 May IHOP2002 dryline: illustrating the scales of interest. Scanning water vapor lidar (30km diameter) is placed at the center surrounded by profiling continuous Raman lidars.

Smaller systems – what do they cost?

HBE 2000

Howard University Raman lidar (Beltsville, MD)

- 0.5 m telescope, 10-12 W laser (355 nm)
- water vapor, aerosol, eye-safe
- •~ equivalent to the SRL for water vapor
- hardware cost: <\$250,000

UNIBAS Raman lidar (Potenza, Italy)

- 0.4 m telescope, 5 W laser
- water vapor, aerosol
- hardware cost: ~\$100,000

IfT "Polly"

- 0.2 m telescope, 2 W laser
- automated (internet!), weather-proof
- hardware cost: ~\$100,000

Raymetrics (Athens, Greece)

- 0.4-0.5 m telescope, 1-3 W laser
- water vapor, aerosol
- "automated", weather-proof
- delivered cost \$200 \$400k

with DAO and main program

The next steps

- Develop water vapor performance specifications for the various small Raman lidar options
 - Include solar blind possibilities possibilities
 - Diode-pumped, micropulse laser available now
 - Perform model assimilation study to determine "optimum value" network configuration
- Design "optimum value" Raman lidar system
 Try to get funded!

Summary

Raman water vapor lidar is a mature technology with ability to quantify boundary layer convective variation
Systems can be made automated and eye-safe for moderate cost
Is the idea of a network of such systems a "good value" for mesoscale research?

- Water vapor mixing ratio
- Aerosol backscatter, extinction, depolarization
- Research mode
 - Cloud liquid, ice water
 - CO₂
- Eye-safe beyond 500m
- Compatible aircraft
 - P-3
 - DC-8
 - Dash-7
- Being configured for first flight
 Spring 2005

Raman Airborne Spectroscopic Lidar (RASL)

Concept of RASL in the P-3

RASL Airborne Simulations

- Quantities
 - Water vapor mixing ratio
 - Aerosol extinction
 A surrogate for cloud CCN?
- Simulated parameters
 - Flight altitude 7 km
 - Averaging time
 - Nighttime-5 sec
 - Daytime-15,60 sec

 5-10% (20%) for both water vapor and aerosol extinction
 Appl. Opt. 40 (3), 375-390 (2001)

Thank/You